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Abstract

We present an optimized double sweep nonoverlapping Schwarz method for solv-
ing the Helmholtz equation in semi-infinite waveguides. The domain is decom-
posed into nonoverlapped layered subdomains along the axis of the waveguide
and local wave propagation problems equipped with complete radiation condi-
tions for high-order absorbing boundary conditions are solved forward and back-
ward sequentially. For communication between subdomains, Neumann data of
local solutions in one domain are transferred to the neighboring subdomain in
the forward direction and Dirichlet data are exploited in the backward direction.
The complete radiation boundary conditions enable us to not only minimize re-
flection coefficients for most important modes in an optimal way but also find
Neumann data without introducing errors that would be produced if finite dif-
ference formulas were used for computing Neumann data. The convergence of
the double sweep Schwarz method is proved and numerical experiments using
it as a preconditioner are presented to confirm the convergence theory.
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1. Introduction

In this paper, we study a nonoverlapping domain decomposition method for
the Helmholtz equation in semi-infinite waveguides by using complete radia-
tion boundary conditions (CRBCs) for an approximation to the exact radiation
condition. We consider the time-harmonic wave propagation problem

∆u + k2u = f in Ω,

∂u

∂ν
= 0 on Γ = ∂Ω \ Γ̄0 and

∂u

∂ν
= T (u) on Γ0.

(1.1)
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Figure 1: Decomposition of the locally perturbed waveguide with b0 = 0 and bL = b.

Here k is a positive wavenumber and Ω is a bounded domain in Rd with d = 2 or
3 obtained by truncating a semi-infinite waveguide Ω∞ at x = 0 (the boundary
at x = 0 is denoted by Γ0), e.g., a cavity as seen in Figure 1. We assume that
Ω∞∩((−∞, b)×Θ) = (−∞, b)×Θ for b > 0 and Θ is a smooth bounded domain
in R

d−1. Also, ν represents the outward unit normal vector on the boundary
of Ω and T is the Dirichlet-to-Neumann (DtN) map employed for the radiation
condition. f ∈ L2(Ω) is a wave source with compact support in Ω. We remark
that our analysis can be extended to more general domains such as junctions of
semi-infinite waveguides.

The Helmholtz equation plays an important role in science and engineering
since its solutions can describe behaviors of diverse time-harmonic wave fields
arising from acoustics, electromagnetics and elastics. However, it is well-known
that computing accurate numerical solutions to the Helmholtz equation, in par-
ticular in the high frequency regime, is challenging due to the highly oscillatory
nature of solutions. Among others, the optimal or optimized Schwarz method
(OSM) [1, 2, 3, 4, 5, 6] has been used successfully to treat the difficulty in
computing numerical solutions to the Helmholtz equation of high wavenumber.
While it can be used as a solver, OSM can also be a preconditioner for iter-
ative Krylov space methods to speed up their convergence. In particular, the
sweeping process for Helmholtz solvers initiated by [7] and independently in-
vented and improved in [8] (which does not look like OSM) becomes attractive
in OSM for the Helmholtz equation due to the advance of efficient absorbing
boundary conditions such as PML. Analysis for these techniques can be found
in the literature [9, 10, 11].

The optimized double sweep Schwarz method proposed in this work is moti-
vated by the source transfer domain decomposition method (STDDM) proposed
by [9] based on the PML method, in which computational domains are split in
one way and the algorithm proceeds by solving subdomain problems in the for-
ward direction to transfer wave sources generated in the former subdomains
and in the backward direction to construct full wave expansions. We note that
their idea to transfer wave sources generated in one domain to the next neigh-
boring domain requires generously overlapped domains of local (subdomain)
problems, which results in somewhat large number of unknowns for subdomain
problems. The new method proposed in this paper reformulates the transpar-
ent boundary condition based on the DtN map such as (3.4) so that imposing
this condition only requires to transfer a Neumann data of radiating wave fields
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from one subdomain to a neighboring subdomain. It is the important advantage
that Neumann data of propagating waves can be computed in one subdomain
and transferred to a neighboring but non-overlapped subdomain as opposed to
STDDM requiring overlapped subdomains for local problems. This result leads
to significant reduction of degrees of freedom of local problems.

Since the DtN map is inconvenient for numerical computation due to its
non-local property, it is required to approximate the DtN map in terms of lo-
cal operators. To this end there have been many approaches such as Talyor
approximations [12] and first and second order optimized methods [1, 2, 4]. In
this paper, we utilize complete radiation boundary conditions [13, 14] for its
approximation. This can be done in that not only can CRBCs be thought of
as approximate operators to DtN map but they can also be imposed with Neu-
mann data coming from neighboring subdomains as the output of the neighbor’s
DtN map on the interfaces between neighboring subdomains. Here CRBCs are
high-order absorbing boundary conditions designed to approximate the exact
radiation condition for numerical computations. They are developed based on
the Higdon’s high order absorbing boundary conditions [15, 16] and are mod-
ified to be more suitable for numerical applications by introducing auxiliary
functions satisfying certain three term recurrence relations with some parame-
ters. It is also shown that these damping parameters of CRBCs can be easily
tuned optimally for minimizing reflections from artificial boundaries.

We note that our optimized double sweep Schwarz method is related to that
of [10] involving nonoverlapping subdomains with Neumann data. However
the algorithm in [10] produces discontinuous solutions while our method leads
to continuous ones and hence well suited for a preconditioner of Krylov space
methods for the full problem such as GMRES. It can also be found that [11] uti-
lizes the DtN map for the transparent boundary condition in their double sweep
process. Their double sweep process serves as a preconditioner for the parallel
Schwarz method, but our paper studies the pure double sweep Schwarz method
to handle the case where one end is closed as the model problem. Furthermore,
we will provide the analysis showing that our optimized double sweep Schwarz
formulation with the approximate transparent condition imposed on the in-
terfaces of subdomains, combined with the convergence of solutions satisfying
CRBCs to radiating solutions investigated in [13], gives rise to the convergence
result of the proposed domain decomposition algorithm.

At last, it can be found in [5] that CRBCs have been used successfully for
transmission conditions of a nonoverlapping Schwarz method, which is examined
as Jacobi-type GMRES preconditioners. The sweeping algorithm in this paper
can be considered as Gauss-Seidel preconditioning for GMRES implementations,
which is more appropriate for the model problems under consideration due to
reflection from the cavity part. Also, we notice that from a computational point
of view implementing the algorithm based on Neumann data in this paper is
simpler and more stable than that in [5], where subdomain problems exchange
information via auxiliary functions of CRBCs.

The outline of the reminder of the paper is given as follows. Section 2
presents preliminaries such as notations and basic Sobolev spaces to be used
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throughout the paper and we review well-posedness of subdomain problems as-
sociated with the exact radiation condition. As the essential idea of our analysis,
transferring Neumann data in the forward sweeping step is discussed in Section
3. Section 4 provides the analysis of the backward sweeping step to construct
full wave expansions. Section 5 is devoted to introducing CRBCs as an approxi-
mate operator to the DtN map and reviewing their equivalent formulas and the
convergence result. It also presents an approximate algorithm of the above steps
introduced in Section 3 and 4 by replacing the exact DtN map with CRBCs and
we study convergence of the new optimized double sweep Schwarz method with
CRBCs. In Section 6 we discuss about implementation of the optimized dou-
ble sweep Schwarz method. Finally, Section 7 reports the results of numerical
examples illustrating the convergence behavior of approximate solutions of our
method.

2. Preliminaries

With a sequence of real numbers 0 = b0 < b1 < . . . < bL = b, we decompose
the domain Ω into the subregions

Ωj = (bj−1, bj)×Θ for j = 1, . . . , L− 1,

ΩL = Ω∞ ∩ {(x, y) ∈ R× R
d−1 : x > bL−1}

with Γj = {bj} × Θ. See Figure 1. Also, we define Ωi,j = (bi, bj) × Θ for
0 ≤ i < j ≤ L. Here we assume that β = bj−bj−1 is constant for j = 1, 2, . . . , L
for notational simplicity.

Let {Yn}
∞
n=0 be the orthonormal basis of L2(Θ) consisting of eigenvectors

for the transversal negative Laplace operator in Θ satisfying

−∆yYn = λ2
nYn in Θ,

∂Yn

∂ν
= 0 on ∂Θ.

Here λ2
n for n = 0, 1, . . . represent eigenvalues associated with eigenvectors Yn

and satisfy

λ2
n ∼ Cn

2
d−1 (2.1)

asymptotically for large n with some positive constant C, see e.g., [17, Ch. VI,
Theorem 20,21]. We define a Sobolev spaceHs(Θ) for s ∈ R on the cross section
Θ by the set of all functions φ =

∑∞

n=0 φnYn such that

‖φ‖2Hs(Θ) =

∞∑

n=0

(1 + λ2
n)

s|φn|
2

is bounded.
By identifying Γ0 with Θ and defining µ2

n = k2 − λ2
n for n = 0, 1, . . ., the

DtN operator T : H1/2(Θ) → H−1/2(Θ) is defined by

T (u) =
∞∑

n=0

iµnunYn
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for u =
∑∞

n=0 unYn in H1/2(Θ).
Since the radiating solution in Ω∞ can be written as the Fourier series

u(x, y) =

∞∑

n=0

Bne
−iµnxYn(y) (2.2)

about Γ0 for some constants Bn, the boundary condition based on the DtN
operator on Γ0 is the exact radiation condition for the truncated problem. Also,
it is well-known that the problem (1.1) has a unique solution provided that k2 is
not a Neumann eigenvalue of the problem (1.1) in the semi-infinite waveguide,
see e.g., [18]. From here on, we assume that k2 is not a Neumann eigenvalue of
the semi-infinite waveguide Ω∞ for the well-posedness of the problem. On the
other hand, as we will develop a domain decomposition technique in the setting
of one-way domain splitting along the x-axis, the well-posedness of local wave
propagation problems is required as well. For this reason, we further assume
that there is no cutoff frequency, i,e., k2 6= λ2

n for n = 0, 1, . . . .. It is noted in
[19] that the Helmholtz equation posed in the straight waveguide (a0, a1)×Θ for
any real a0 < a1 with the DtN transparent boundary condition at x = a0, a1 is
well-posed except for k2 = λ2

n and modes corresponding to the cutoff frequencies
are eigenfunctions. Under this situation, there exists an integer N > 0 such that

k2 > λ2
N and k2 < λ2

N+1

and so the radiation solution u given by (2.2) can be interpreted as a superpo-
sition of propagating modes and evanescent modes

u(x, y) =

N∑

n=0

Bne
−iµnxYn(y) +

∞∑

n=N+1

Bne
µ̃nxYn(y) for x < 0,

where µ̃n =
√
λ2
n − k2 > 0 for n > N .

For the variational representation of the model problem, we let H1(D) for
domains D in Rd represent a standard Sobolev space of L2-integrable functions
defined in D together with their first derivatives. By L̃2(D) we denote a subset
of L2(D) consisting of compactly supported functions. Let (·, ·)D and 〈·, ·〉Γj

be the L2-inner product in D and the duality pairing between H−1/2(Γj) and
H1/2(Γj), respectively. We introduce the sesquilinear form A(·, ·) defined by

A(u, v) = (∇u,∇v)Ω − k2(u, v)Ω − 〈Tu, v〉Γ0
for u, v ∈ H1(Ω).

Then the the problem (1.1) is reformulated in a variational form to find u ∈
H1(Ω) satisfying

A(u, φ) = (−f, φ)Ω for φ ∈ H1(Ω).

Assume that f =
∑L

j=1 fj such that fj belongs to L̃2(Ωj). Due to the linearity
of the problem, the solution u to the problem (1.1) can be written as a super-

position of solutions resulting from each source fj , i.e., u =
∑L

j=1 uj, where uj

is the solution to the problem

A(uj , φ) = (−fj, φ)Ω for φ ∈ H1(Ω). (2.3)
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We now discuss the well-posedness of the problem posed in a straight waveg-
uide D = (a, b)×Θ for any real a < b with the left boundary Γa = {a}×Θ and

the right boundary Γb = {b}×Θ. In particular, for f ∈ L̃2(D), gN ∈ H−1/2(Γa)
and gD ∈ H1/2(Γb), the well-posedness of wave propagation problems with Neu-
mann data (2.4) or with Dirichlet-Neumann data (2.5) is presented,

∆u + k2u = f in D,

∂u

∂ν
= T (u) + gN on Γa and

∂u

∂ν
= T (u) on Γb

(2.4)

and
∆u + k2u = f in D,

∂u

∂ν
= T (u) + gN on Γa and u = gD on Γb,

(2.5)

with the sound-hard boundary condition ∂u/∂ν = 0 on (a, b)×∂Θ, respectively.
From now on, we assume that the sound-hard boundary condition is imposed
on physical boundaries unless otherwise stated. These problems will serve as
local problems of the double sweep Schwarz algorithm proposed in this paper.
The following lemmas are standard and they can be proved by invoking the
Fredholm alternative and so their proofs are omitted.

Lemma 2.1. The problem (2.4) has a unique solution u in H1(D). In addition,
it holds that

‖u‖H1(D) ≤ C(‖f‖L2(D) + ‖gN‖H−1/2(Γa)).

Lemma 2.2. The problem (2.5) has a unique solution u in H1(D). In addition,
it holds that

‖u‖H1(D) ≤ C(‖f‖L2(D) + ‖gN‖H−1/2(Γb) + ‖gD‖H1/2(Γa)).

At last, we address the regularity result for solutions to the local wave prop-
agation problems investigated in [20, 18].

Remark 2.3. The regularity of solutions u to the problem (2.4) with gN ∈
H1/2(Γa) is

‖u‖H2(D) ≤ C(‖f‖L2(D) + ‖gN‖H1/2(Γa)).

3. Data transferring via the exact DtN operator

Let 1 ≤ j ≤ L− 1 and f̂ ∈ L̃2(Ω0,j). Now we consider the problem

A(û, φ) = (−f̂ , φ)Ω for φ ∈ H1(Ω). (3.1)

The wave expansion of the solution û restricted to Ωj,L consists of the right-
going modes and left-going modes,

û(x, y) =

∞∑

n=0

Ane
iµnxYn(y) +

∞∑

n=0

Bne
−iµnxYn(y)

:= ur(x, y) + ul(x, y) in Ωj,L.

(3.2)
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In order to examine û in more detail, let ũr be the radiating solution of the
problem with the same source f̂ but in the straight waveguide Ω0,L,

∆ũr + k2ũr = f̂ in Ω0,L,

∂ũr

∂ν
= T (ũr) on Γ0 ∪ ΓL,

(3.3)

where ν is the outward unit normal vector on the boundary of Ω0,L. Sometimes,
we will use νi,j for the unit normal vector on the common boundary from Ωi to
Ωj .

Now we consider the total wave field ũl generated when ũr propagates into
the cavity Ωj,L ∪ ΩL through Γj . We know that ũl in Ωj,L is also decomposed
into outgoing (left-going) and incoming (right-going) components as in (3.2),
which are denoted by ũout

l and ũin
l , respectively, i.e., ũl = ũout

l + ũin
l in Ωj,L.

Since there is no incoming wave source except for ũr, it is clear that ũin
l = ũr

in Ωj,L. Noting that ũr represents the right-going wave in Ωj,L, it follows that
on Γj with ν = νj+1,j

∂ũl

∂ν
=

∂ũout
l

∂ν
+

∂ũin
l

∂ν
= T (ũout

l )− T (ũr)

= T (ũl)− 2T (ũr) = T (ũl) + 2
∂ũr

∂ν
.

(3.4)

Therefore, ũl is the solution to the problem in Ωj,L ∪ ΩL

∆ũl + k2ũl = 0 in Ωj,L ∪ ΩL,

∂ũl

∂ν
= T (ũl) + 2

∂ũr

∂ν
on Γj .

In the following lemma, we can show that the right-going component ur of
û in Ωj,L is identified with the right-going one generated solely by the wave

source f̂ in the straight waveguide, in other words, ur = ũr in Ωj,L and the
left-going component ul of û in Ωj,L is one that results from the reflection of
the propagation of ur into Ωj,L ∪ ΩL, i.e., ul = ũout

l in Ωj,L.

Lemma 3.1. Assume that û, ũr, ũl and ũout
l are defined as above. Then it

holds that

(1) û = ũr + ũout
l in the straight waveguide Ω0,L,

(2) û = ũl in Ωj,L ∪ ΩL.

Proof. We first extend the left-going component ũout
l to Ω0,j by taking the

solution to the problem

∆φ+ k2φ = 0 in Ω0,j ,

∂φ

∂ν
= T (φ) on Γ0 and φ = ũout

l on Γj .
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By considering ũout
l as the extended function defined in Ω0,L, we define

v(x, y) =

{
ũr(x, y) + ũout

l (x, y) for (x, y) ∈ Ω0,L,
ũl(x, y) for (x, y) ∈ Ωj,L ∪ ΩL.

Since ũr + ũout
l coincides with ũl in the transition layer Ωj,L by the definition of

ũr, ũ
out
l and ũl, v is well-defined. Clearly, v is the solution to the problem (3.1),

which leads to (1) and (2).

Now, we will discuss the right sweeping algorithm in which data of the right-
going component generated by fj in Ωj are transferred to the right neighboring
domain Ωj+1 as incoming data. Let w0 = 0. For j = 1, . . . , L, with a given
right-going component of wj−1 near Γj−1 in Ωj−1 as incoming data, we solve
the problem with the source fj in the straight waveguide Ωj−1,L to find wj

satisfying

∆wj + k2wj = fj in Ωj−1,L,

∂wj

∂ν
= T (wj) + gj−1 on Γj−1 and

∂wj

∂ν
= T (wj) on ΓL,

(3.5)

where gj−1 = 2∂wj−1/∂νj,j−1 on Γj−1 is the incoming data.

Lemma 3.2. For 1 ≤ j ≤ L− 1, let vj be the solution to the problem (3.3) for

f̂ :=
∑j

ℓ=1 fj. Then it holds that vj = wj in Ωj−1,L.

Proof. When j = 1, since v1 solves the same equation as w1, it is obvious that
v1 = w1 in Ω0,L.

Assume that vj−1 = wj−1 in Ωj−2,L for 2 ≤ j ≤ L − 1. Now, we see that
vj is a superposition of two wave fields, vj = vj−1 + ṽj , one of which is vj−1

resulting from the source
∑j−1

ℓ=1 fj and the other denoted by ṽj is generated by
fj, i.e., ṽj is the radiating solution to the problem

∆ṽj + k2ṽj = fj in Ωj−1,L,

∂ṽj
∂ν

= T (ṽj) on Γj−1 ∪ ΓL.
(3.6)

By the inductive assumption, it holds that vj−1 = wj−1 in Ωj−2,L and hence
vj−1 satisfies the equations

∆vj−1 + k2vj−1 = 0 in Ωj−1,L,

∂vj−1

∂ν
= T (vj−1) + gj−1 on Γj−1 and

∂vj−1

∂ν
= T (vj−1) on ΓL.

(3.7)
From the linearity of the problems (3.6) and (3.7), it follows that vj =

vj−1 + ṽj is the solution to the problem (3.5) and hence vj = wj in Ωj−1,L,
which completes the proof by the induction argument.
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We are interested in finding data gj−1 coming into Ωj , which can be achieved
by solving the problem (3.5) and taking gj = 2∂wj/∂νj+1,j for j = 1, 2, . . . , L−1
with g0 = 0. However, we can do this by solving problems in smaller domains
Ωj instead of problems (3.5) in larger domains Ωj−1,L. In fact, the solution (re-
stricted to Ωj) to the wave propagation problem (3.5) in the straight waveguide
Ωj−1,L is identical with one to the problem in Ωj ,

∆w̃j + k2w̃j = fj in Ωj ,

∂w̃j

∂ν
= T (w̃j) + g̃j−1 on Γj−1 and

∂w̃j

∂ν
= T (w̃j) on Γj ,

(3.8)

where g̃j−1 = 2∂w̃j−1/∂νj,j−1 on Γj−1 with g̃0 = 0.

Lemma 3.3. Let wj and w̃j be the solutions to the problem (3.5) and (3.8),
respectively. Then wj restricted to Ωj coincides with w̃j in Ωj. In addition,
gj−1 = g̃j−1 on Γj−1 for j = 1, 2, . . . , L.

Proof. This is due to the fact that the boundary conditions based on the DtN
operator on ΓL in (3.5) and Γj in (3.8) are the exact radiation boundary condi-
tion. The solution of (3.5) ((3.8), respectively) is considered as the restriction to
Ωj−1,L (Ωj , respectively) of the solution to the semi-infinite waveguide problem
in (bj−1,∞) × Θ satisfying the radiation condition. Since the initial incoming
data g0 and g̃0 are equal, the induction argument completes the proof.

We construct inductively the Neumann incoming data g̃j−1 coming into the
domain Ωj for j = 1, 2, . . . , L with g̃0 = 0 by solving local problems (3.8).

Algorithm 1. Right sweeping to find the incoming data g̃j = 2∂w̃j/∂νj+1,j for
j = 1, 2, . . . , L− 1:

1. Set g̃0 = 0.

2. Do for j = 1, 2, . . . , L− 1,

i. Solve (3.8) for w̃j.

ii. Compute g̃j = 2
∂w̃j

∂νj+1,j
= −2

∂w̃j

∂x
on Γj.

End do

We close this section with the following regularity result for solutions to the
local wave propagating problem mentioned in Remark 2.3.

Remark 3.4. As a consequence of Lemma 3.2, Lemma 3.3 and the regularity
of solutions to the problem (3.3), we have

‖w̃j‖H2(Ωj) ≤ C‖

j∑

ℓ=1

fℓ‖L2(Ω).
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4. Full wave expansion

In this section, we shall find the wave expansion of the solution u in each
subregion Ωj for j = 1, 2, . . . , L. During the backward sweep, we solve the
subdomain problems with the transparent condition on the left boundary and
the Dirichlet condition on the right boundary. Here it is worth pointing out that
any condition on the right boundary that makes the local problem well-posed can
be used for the optimal convergence (see e.g., [21]). Here we choose the Dirichlet
condition on the right boundary of each subdomain for the continuity of the
approximate solution on the interfaces. The Dirichlet condition is important to
get continuous iterates across the nonoverlapping subdomains for our analysis
at the PDE level.

Assuming that g̃j for 0 ≤ j ≤ L−1 are determined by Algorithm 1, we begin
with finding the solution u restricted to ΩL to the problem (1.1). Let w̃L be
the function satisfying

∆w̃L + k2w̃L = fL in ΩL,

∂w̃L

∂ν
= T (w̃L) + g̃L−1 on ΓL−1.

(4.1)

Theorem 4.1. Let u and w̃L be the solutions to the problem (1.1) and (4.1),
respectively. Then u = w̃L in ΩL.

Proof. By the linearity of the problem, u can be decomposed into u = uL+ûL,
where uL and ûL are the solutions to the problems

A(uL, φ) = (−fL, φ)Ω for φ ∈ H1(Ω)

and
A(ûL, φ) = (−f̂ , φ)Ω for φ ∈ H1(Ω),

respectively, where f̂ =
∑L−1

ℓ=1 fj .
We first note that the radiating solution uL solves the problem

∆uL + k2uL = fL in ΩL,

∂uL

∂ν
= T (uL) on ΓL−1.

(4.2)

On the other hand, let wL−1 be the solution to the problem (3.5) with
j = L−1. Lemma 3.2 shows that wL−1 about ΓL−1 is the right-going wave field
generated by f̂ , and then it follows from Lemma 3.1 that ûL solves the problem

∆ûL + k2ûL = 0 in ΩL,

∂ûL

∂ν
= T (ûL) + g̃L−1 on ΓL−1,

(4.3)

where g̃L−1 = 2∂wL−1/∂νL,L−1 on ΓL−1. Combining (4.2) and (4.3) implies
that u = wL in ΩL.
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For g̃j with j = 0, 1, . . . , L − 1 determined by Algorithm 1 and w̃L(= u) in
ΩL obtained by solving the problem (4.1), we shall find the solution u in each
domain Ωj inductively from j = L− 1 to j = 1 as follows. Setting zL = w̃L and
assuming that zj+1 is given in Ωj+1 for j < L, we find the unique solution zj in
Ωj to the problem

∆zj + k2zj = fj in Ωj ,

∂zj
∂ν

= T (zj) + g̃j−1 on Γj−1 and zj = zj+1 on Γj .
(4.4)

Theorem 4.2. Let u be the solution to the problem (1.1) and let zj be defined as
above for j = L,L−1, . . . , 1. Then we have zj = u in Ωj for j = L,L−1, . . . , 1.

Proof. By the definition of zL and Theorem 4.1, we have zL = u in ΩL. We
will first show that zj = u in Ωj under the assumption that zj+1 = u in Ωj+1

for 1 ≤ j < L.
The proof proceeds by splitting the solution u into two wave fields, u =

û1 + û2, where ûj for j = 1, 2 is the solution to the problem

A(ûj , φ) = (−f̂j, φ)Ω for φ ∈ H1(Ω),

with f̂1 =
∑j

ℓ=1 fℓ and f̂2 =
∑L

ℓ=j+1 fℓ.
Now, by Lemma 3.1 the first wave field û1 can be also decomposed into two

parts, û1 = ũr + ũout
l in Ω0,L, where ũr and ũout

l are defined as in Lemma 3.1,
and hence

u = ũr + ũout
l + û2 in Ω0,L. (4.5)

By Lemma 3.2 and Lemma 3.3, we can show that ũr is the solution to the
problem

∆ũr + k2ũr = fj in Ωj ,

∂ũr

∂ν
= T (ũr) + g̃j−1 on Γj−1 and

∂ũr

∂ν
= T (ũr) on Γj .

(4.6)

By using (4.5) and the fact that zj+1 = u on Γj and ũout
l + û2 satisfies the

radiation condition on Γj−1, it is easy to see that ũout
l + û2 satisfies

(∆ + k2)(ũout
l + û2) = 0 in Ωj ,

∂

∂ν
(ũout

l + û2) = T ((ũout
l + û2)) on Γj−1,

(ũout
l + û2) = zj+1 − ũr on Γj .

(4.7)

Finally, adding the solutions to two problems (4.6) and (4.7), we see that
u = ũr + ũout

l + û2 in Ωj is the unique solution to the problem (4.4), which
implies that zj = u in Ωj .

Now, we are in the position to describe the algorithm to construct local
solutions in Ωj , which coincide with the solution u to the problem (1.1) in Ωj .
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Assume that we have the incoming data g̃j for j = 0, 1, . . . , L− 1 by Algorithm
1.

Algorithm 2. Left sweeping to find the wave expansion zj in Ωj for j = L,L −
1, . . . , 1:

1. Find zL by solving the problem (4.1) in ΩL.

2. Do for j = L− 1, . . . , 1,

i. Compute the Dirichlet data of zj+1 on Γj.
ii. Find zj by solving the problem (4.4) in Ωj.

End do

5. Approximate wave expansion with complete radiation boundary

conditions

This section is devoted to introducing the optimized double sweep Schwarz
algorithmwith the exact DtN map replaced by high-order approximate radiation
conditions, so-called complete radiation boundary conditions. By employing
CRBCs, the local problems can be easily discretized with sparse linear systems.

5.1. Complete radiation boundary conditions

The complete radiation boundary conditions have been developed to approx-
imate the exact radiation condition based on the DtN operator T : H1/2(Θ) →
H−1/2(Θ). In order to define CRBCs, we need distinct damping parameters
given as follows: let np and ne be non-negative integers determining the order
(np, ne) of CRBCs,

aj =

{
−ikcj for j = 0, 1, . . . , np − 1,
σj for j = np, . . . , np + ne − 1

(5.1)

and

ãj =

{
−ikc̃j for j = 0, 1, . . . , np − 1,
σ̃j for j = np, . . . , np + ne − 1

(5.2)

with the conditions

µmin/k ≤ cj , c̃j ≤ 1 and µ̃min ≤ σj , σ̃j ≤ µ̃max. (5.3)

Here µmin and µ̃min are the smallest axial frequency of propagating modes
and the smallest decay rate of evanescent modes, respectively. For instance,
µmin = µN and µ̃min = µ̃N+1 in the model problem. Also, µ̃max denotes
an upper bound of the axial frequencies of evanescent modes that numerical
techniques depending on mesh size h can support.

The CRBC on Γ0 for the radiation condition for x → −∞ is defined in
terms of auxiliary functions φj defined in (0, δ)×Θ for small constant δ > 0 as
follows: there exist φj for j = 0, 1, . . . , np+ne satisfying the Helmholtz equation

12



∆φj +k2φj = 0 in (0, δ)×Θ with ∂φj/∂ν = 0 on (0, δ)×∂Θ and the recurrence
relations

φ0 = u in (0, δ)×Θ,

(
∂

∂ν
+ aj)φj = (−

∂

∂ν
+ ãj)φj+1 in (0, δ)×Θ

(5.4)

(∂/∂ν = −∂/∂x is the outward normal derivative with respect to the boundary
Γ0) for j = 0, 1, . . . , np + ne − 1 with the terminal condition

∂

∂ν
φnp+ne = 0 on Γ0. (5.5)

Here let P = np + ne − 1.
Since auxiliary functions φj satisfy the Helmholtz equation, they can be

written as the series

φj(x, y) =

∞∑

n=0

(Aj
ne

iµnx +Bj
ne

−iµnx)Yn(y) in (0, δ)×Θ.

Noting that the solution u is also written as

u(x, y) =

∞∑

n=0

(Ane
iµnx +Bne

−iµnx)Yn(y) in (0, δ)×Θ

with A0
n = An and B0

n = Bn, the recurrence relations (5.4) reveal that Fourier
coefficients Aj

n and Bj
n of φj satisfy

(aj − iµn)A
j
n = (ãj + iµn)A

j+1
n and (aj + iµn)B

j
n = (ãj − iµn)B

j+1
n

for j = 0, 1, . . . , P . Therefore, if a damping parameter ãj is chosen so that
ãj = −iµn for some n, then we can see that An = A1

n = . . . = Aj
n = 0 and the

CRBC behaves as the exact radiation condition for the n-th modes. Otherwise,
since

AP+1
n =




P∏

j=0

aj − iµn

ãj + iµn



An and BP+1
n =




P∏

j=0

aj + iµn

ãj − iµn



Bn,

the terminal condition (5.5) leads to

An =

P∏

j=0

(aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)
Bn,

which shows that the reflection coefficient for the n-th modes is given by

ρ =
P∏

j=0

∣∣∣∣
(aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)

∣∣∣∣ .
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Due to the definitions (5.1) and (5.2) of the parameters and the conditions (5.3),
it is clear that

∣∣∣∣
(aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)

∣∣∣∣ < 1

{
for j = 0, 1, . . . , np − 1 if n ≤ N,
for j = np, . . . , np + ne − 1 if n > N,

which shows that reflection coefficients for important modes can be reduced
exponentially by increasing parameters. More precisely, it is shown in [22] that
by solving the min-max problems

ρp ≡ min
a0,...,anp−1,

ã0,...,ãnp−1∈iR
−

max
µ∈[µmin,k]

np−1∏

j=0

∣∣∣∣
(aj + iµ)(ãj + iµ)

(aj − iµ)(ãj − iµ)

∣∣∣∣ , (5.6)

ρe ≡ min
anp ,...,anp+ne−1

ãnp ,...,ãnp+ne−1∈R+

max
µ∈[µ̃min,µ̃max]

np+ne−1∏

j=np

∣∣∣∣
(aj − µ)(ãj − µ)

(aj + µ)(ãj + µ)

∣∣∣∣ , (5.7)

the reflection coefficients ρp and ρe for propagating modes and evanescent modes
satisfy

ρp ≤ e−Cnp/ ln(k/µmin) and ρe ≤ e−Cne/ ln(µ̃max/µ̃min).

See [5] to find examples showing how the parameters aj and ãj for given k and
CRBC order (np, ne) are distributed and how the reflection coefficients behaves
for each important modes.

The CRBCs defined by the recurrence relations (5.4)-(5.5) of auxiliary func-
tions can be interpreted as an approximate DtN operator. In [13], it is shown
that CRBCs are equivalent to the boundary condition associated with the op-
erator Ttc : H

1/2(Γ0) → H−1/2(Γ0) defined by

Ttc(u) =

∞∑

n=0

iµn

1− Zn
0,P

1 + Zn
0,P

unYn (5.8)

for u =
∑∞

n=0 unYn in H1/2(Γ0), where

Zn
0,P =

(aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)
.

That is, u satisfies the CRBC (5.4) and (5.5) on Γ0 if and only if u satisfies

∂u

∂ν
= Ttc(u) on Γ0. (5.9)

Thus, approximate radiating solutions satisfying the CRBC on Γ0 solve the
weak problem

Atc(u, φ) = (−f, φ)Ω for φ ∈ H1(Ω), (5.10)

where
Atc(u, φ) = (∇u,∇φ)Ω − k2(u, φ)Ω − 〈Ttc(u), φ〉Γ0

.
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Since limn→∞ Zn
0,P = 1 for given parameters aj and ãj , the approximate

DtN map Ttc does not converge to the exact DtN map T as operators from
H1/2(Γ0) to H−1/2(Γ0). However, it is shown in [13] that Ttc converges to T
for sufficiently smooth φ ∈ H1/2+s(Γ0) with s > 0, i.e., for any np > 0, there
exists M0 = M0(np) > N such that for any M ≥ M0 and ne > 0 it holds that

‖(T − Ttc)φ‖
2
H−1/2(Γ0)

≤ CE(np, ne,M)‖φ‖2H1/2+s(Γ0)
, (5.11)

where

E(np, ne,M) ≡ (e−Cnp/ ln(k/µmin) + e−Cne/ ln(µ̃M/µ̃min) + (1 + λ2
M )−s)1/2.

We note that E can be arbitrarily small by taking sufficiently large np, M and
ne due to (2.1) with k, µmin and µ̃min fixed. This convergence estimate plays
an essential role for not only well-posedness of (5.10) but also the convergence
of approximate solutions. In fact, the convergence result of (5.11) enables us
to replace the DtN map T in (3.8), (4.1) and (4.4) by Ttc to find approximate
solutions. The convergence analysis will be presented in the next subsection.

For computational purposes, CRBCs can be written in terms of auxiliary
functions Φ = (φ0, . . . , φP+1)

t ∈ (H1(Γ0))
P+2 with u = φ0 on Γ0 satisfying the

system of differential equations

−
∂u

∂ν
e0 = −L∇2

yΦ+ (−k2L+M)Φ on Γ0

∂Φ

∂ν
= 0 on ∂Γ0,

(5.12)

where ej is the standard basis vector in CP+2 whose nonzero entry is one at the
j-th component, L and M are (P +2)× (P +2) symmetric tridiagonal matrices
whose nonzero entries are

Lj,j−1 =
1

aj−1 + ãj−1
, Lj,j =

1

aj−1 + ãj−1
+

1

aj + ãj
, Lj,j+1 =

1

aj + ãj

Mj,j−1 =
−a2j

aj−1 + ãj−1
, Mj,j =

aj−1ãj−1

aj−1 + ãj−1
+

aj ãj
aj + ãj

, Mj,j+1 =
−ã2j

aj + ãj

for j = 0, . . . , P + 1. Here we use the convention that the terms with indices
out of the limits are ignored, for instance,

L0,0 =
1

a0 + ã0
and LP+1,P+1 =

1

aP + ãP
.

A derivation of (5.12) can be found in [13, 14].
Thus approximate radiating solutions to the problem (1.1) satisfying the

CRBC on Γ0 solve

∆u + k2u = f in Ω,

∂u

∂ν
e0 = L∇2

yΦ + (k2L−M)Φ on Γ0 and
∂Φ

∂ν
= 0 on ∂Γ0.

15



DenotingV = {(u,Φ) ∈ H1(Ω)×(H1(Γ0))
P+2 : u = φ0 on Γ0}, the variational

reformulation can be written as finding (u,Φ) ∈ V satisfying

Apc((u,Φ), (ξ,Ψ)) = (−f, ξ)Ω for (ξ,Ψ) ∈ V, (5.13)

where

Apc((u,Φ), (ξ,Ψ)) = (∇u,∇ξ)Ω − k2(u, ξ)Ω

+ 〈L∇yΦ,∇yΨ〉Γ0
+ 〈(−k2L+M)Φ,Ψ〉Γ0

.

This formulation is well-suited for finding finite element approximations. By
the equivalence between different representations of CRBCs, we can use (5.13)
based on (5.12) for numerical computations but rely on another formulation
(5.10) based on (5.9) for a convergence analysis (see [13]).

5.2. Algorithm for finding approximate solutions

Let g0 = 0 on Γ0. For j = 1, 2, . . . , L− 1, we solve the problem

∆wj + k2wj = fj in Ωj ,

∂wj

∂ν
= Ttc(wj) + gj−1 on Γj−1 and

∂wj

∂ν
= Ttc(wj) on Γj,

(5.14)

where gj−1 = 2∂wj−1/∂νj,j−1 is the incoming data. The variational problem
corresponding to the problem (5.14) is to find wj ∈ H1(Ωj) satisfying

Aj(wj , ξ) = (−fj , ξ)Ωj + 〈gj−1, ξ〉Γj−1
for all ξ ∈ H1(Ωj), (5.15)

where Aj(·, ·) is a sesquilinear form defined in H1(Ωj)×H1(Ωj) by

Aj(φ, v) = (∇φ,∇v)Ωj − k2(φ, v)Ωj − 〈Ttc(φ), ξ〉Γj−1∪Γj (5.16)

for φ and v ∈ H1(Ωj). In [13], it is proved that the problem (5.15) is well-posed
if np and ne are sufficiently large. Also, the following is the result of Theorem 3.9
in [13] with Neumann incoming data.

Lemma 5.1. Let w̃j ∈ H1+s(Ωj), 0 < s ≤ 1 and wj ∈ H1(Ωj) be the solutions
to the problems (3.8) and (5.14), respectively. Then for any np > 0, there exists
M0 > N such that for any M ≥ M0 and ne > 0 the error w̃j − wj satisfies

‖w̃j − wj‖H1(Ωj) ≤ C
[
E(np, ne,M)‖w̃j‖H1+s(Ωj) + ‖g̃j−1 − gj−1‖H−1/2(Γj−1)

]

for j = 1, 2, . . . , L.

Using Lemma 5.1 inductively and a trace inequality yield the next lemma
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Lemma 5.2. Let w̃j ∈ H1+s(Ωj), 0 < s ≤ 1 and wj ∈ H1(Ωj) be the solutions
to the problems (3.8) and (5.14), respectively. Then for any np > 0, there exists
M0 > N such that for any M ≥ M0 and ne > 0 the error w̃j − wj satisfies

‖w̃j − wj‖H1(Ωj) ≤ CjE(np, ne,M)‖

j∑

ℓ=1

fℓ‖L2(Ω) (5.17)

for j = 1, 2, . . . , L. Here Cj is a generic positive constant that may depend on
j and a trace constant. Furthermore, by a trace inequality we have

‖g̃j − gj‖H−1/2(Γj) ≤ CjE(np, ne,M)‖

j∑

ℓ=1

fℓ‖L2(Ω). (5.18)

Proof. The proof proceeds by mathematical induction on j. For j = 1, since
g̃0 = g0 = 0 on Γ0, we have

‖w̃1 − w1‖H1(Ω1) ≤ CE‖w̃1‖H1+s(Ω1)

by Lemma 5.1 and, in turn, a trace inequality and the regularity of w̃1 mentioned
in Remark 3.4 show that

‖g̃1 − g1‖H−1/2(Γ1) ≤ C1E‖f1‖L2(Ω1).

Assume that the estimates (5.17) and (5.18) hold for j − 1 < L − 1. Now,
Lemma 5.1, Remark 3.4 and the inductive assumption prove that

‖w̃j − wj‖H1(Ωj) ≤ C
[
E‖w̃j‖H1+s(Ωj) + ‖g̃j−1 − gj−1‖H−1/2(Γj−1)

]

≤ C

[
E‖

j∑

ℓ=1

fℓ‖L2(Ω) + Cj−1E‖

j−1∑

ℓ=1

fℓ‖L2(Ω)

]
≤ CjE‖

j∑

ℓ=1

fℓ‖L2(Ω)

for some Cj > 0, which verifies the first estimate (5.17). Combining (5.17) and
a trace inequality lead to (5.18), which completes the proof.

In backward sweeping to find the full wave expansion of approximate solu-
tions, we consider the problem

∆zj + k2zj = fj in Ωj,

∂zj
∂ν

= Ttc(zj) + gj−1 on Γj−1 and zj = zj+1 on Γj

(5.19)

for j = 1, 2, . . . , L− 1 and

∆zL + k2zL = fL in ΩL,

∂zL
∂ν

= Ttc(zL) + gL−1 on ΓL−1.
(5.20)

It can be shown that the problem (5.19) is well-posed by the same idea as
that used for the problem (5.15) (see [13]) with a standard solution estimation
involving Dirichlet data on Γj , which is presented in the following lemma
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Lemma 5.3. Let zj ∈ H1+s(Ωj), 0 < s ≤ 1 and zj ∈ H1(Ωj) be the solutions
to the problems (4.4) and (5.19), respectively. Then for any np > 0, there exists
M0 > N such that for any M ≥ M0 and ne > 0, the error zj − zj satisfies

‖zj − zj‖H1(Ωj) ≤ C
[
E(np, ne,M)‖zj‖H1+s(Ωj)

+ ‖gj−1 − gj−1‖H−1/2(Γj−1) + ‖zj+1 − zj+1‖H1/2(Γj)

]

for j = 1, 2, . . . , L− 1.

Finally, we provide the convergence result of approximate solutions obtained
by the sweeping algorithms. As mathematical induction with decreasing j can
prove it in the same fashion as for Lemma 5.2, the proof is omitted here.

Theorem 5.4. Let zj ∈ H1+s(Ωj), 0 < s ≤ 1 and zj ∈ H1(Ωj) be the solutions
to the problems (4.4) and (5.19), respectively. Then for any np > 0, there exists
M0 > N such that for any M ≥ M0 and ne > 0, the error satisfies

‖zj − zj‖H1(Ωj) ≤ CjE(np, ne,M)‖f‖L2(Ω) (5.21)

for j = 1, 2, . . . , L. Here Cj is a generic positive constant that may depend on
j and a trace constant.

We summarize the algorithm to find approximate solutions as follows:

Algorithm 3: to approximate solutions of the problem (1.1)

Step I: Right sweeping to find the approximate incoming data gj = 2∂wj/∂νj+1,j

for j = 0, 1, . . . , L− 1:

(1) Set g0 = 0.
(2) Do for j = 1, 2, . . . , L− 1,

i. Solve (5.14) for wj.

ii. Compute gj = 2
∂wj

∂νj+1,j
= −2

∂wj

∂x
on Γj.

End do

Step II: Left sweeping to find the approximate wave expansion zj in Ωj

for j = L, . . . , 2, 1:

(1) Find zL by solving the problem (5.20) in ΩL.
(2) Do for j = L− 1, . . . , 1,

i. Compute the Dirichlet data of zj+1 on Γj.
ii. Find zj by solving the problem (5.19) in Ωj.

End do

Remark 5.5. When the domain Ω is a straight waveguide without a cavity, we
can develop a Schwarz algorithm that can be easily parallelizable, i.e., we use a
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Jacobi-type nonoverlapping Schwarz method,

∆um+1
j + k2um+1

j = fj in Ωj ,

∂um+1
j

∂νj,j−1
= T (um+1

j ) + gW,m
j on Γj−1,

∂um+1
j

∂νj,j+1
= T (um+1

j ) + gE,m
j on Γj ,

where m stands for the iteration number. Here gW,m
j and gE,m

j are Neumann
data of wave fields coming into the domain Ωj through Γj−1 and Γj, respectively
and they are determined by

gW,m
j =

∂um
j−1

∂νj,j−1
− T (um

j−1) and gE,m
j =

∂um
j+1

∂νj,j+1
− T (um

j+1).

In fact, gW,m
j (gE,m

j ) is the Neumann data of the right-going (left-going) compo-
nent of um

j−1 (um
j+1) multiplied by −2 and they are the incoming sources for the

subdomain problem as seen in (3.4) with ν = νj,j±1. Now, this Schwarz itera-
tion formula can be approximated by replacing the DtN map T by CRBCs Ttc as
done for the double sweeping Algorithm 3. It is worth noting that [5] proposed a
similar Jacobi-type Schwarz method transferring data associated with auxiliary
functions instead of Neumann data on physical boundaries Γj. There, it is ad-
dressed that a stability issue might arise in finding incoming data from a system
of equations involving auxiliary functions on interfaces as seen in Fig. 7 of [4],
however this new approach exploiting Neumann data on physical boundaries can
get rid of this stability problem.

6. Implementation of the algorithm

As addressed in Subsection 5.1, when we seek for solutions wj to the problem
(5.14) and zj to (5.19) and (5.20), we apply the finite element method to the
weak problems based on (5.12). For the problem (5.14) in the right sweeping
process of Step I, the test space V is defined by

V = {(u,ΦW ,ΦE) ∈ H1(Ωj)× (H1(Γj−1))
P+2 × (H1(Γj))

P+2 :

u = φW
0 on Γj−1 and u = φE

0 on Γj},

where ΦW = (φW
0 , . . . , φW

P+1)
t and ΦE = (φE

0 , . . . , φ
E
P+1)

t, and the sesquilinear
form is given by

Apc((u,Φ
W ,ΦE), (ξ,ΨW ,ΦE)) = (∇u,∇ξ)Ωj − k2(u, ξ)Ωj

+ 〈L∇yΦ
W ,∇yΨ

W 〉Γj−1
+ 〈(−k2L+M)ΦW ,ΨW 〉Γj−1

+ 〈L∇yΦ
E ,∇yΨ

E〉Γj + 〈(−k2L+M)ΦE ,ΨE〉Γj .
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Figure 2: Number of GMRES iterations vs. wavenumber.

Then weak solutions to the problem (5.14) are obtained by solving the problem

Apc((wj ,Φ
W ,ΦE), (ξ,ΨW ,ΨE)) = (−fj , ξ)Ωj+〈gj−1, ξ〉Γj−1

for (ξ,ΨW ,ΨE) ∈ V

(6.1)
for j = 1, 2, . . . , L− 1.

Now, we discuss about how to compute the right-hand-side vectors of (6.1)
involving data gj−1 in finite element implementations. We recall that the date
gj−1 are given by

gj−1 = 2
∂wj−1

∂νj,j−1
= −2

∂wj−1

∂νj−1,j
on Γj−1.

Let ϑ1, . . . , ϑJ be nodal basis functions on Γj−1 and denote the J × J mass
and stiffness matrices on Γj−1 by M and S, respectively. Here all we need is L2-
inner products of the finite element approximation of gj−1 with finite element
basis functions in Γj−1, i.e, if we denote the coefficient vector of the finite
element approximation of gj−1 by g, then we need to find Mg. Assume that
the finite element solution for (wj−1,Φ

W ,ΦE) satisfying (6.1) in the subdomain
Ωj−1 is at hand and hence we have coefficient vectors for the finite element
approximations of φE

0 and φE
1 on Γj−1, denoted by u0 and u1 with respect to

ϑ1, . . . , ϑJ , respectively.
Now, the computation of Mg can be performed as follows. The zero-th

equation of the system of equations in (5.12) with Γ0 replaced by Γj−1 reads

−
∂wj−1

∂νj−1,j
= −L0,0∇

2
yφ

E
0 −L0,1∇

2
yφ

E
1 +(−k2L0,0+M0,0)φ

E
0 +(−k2L0,1+M0,1)φ

E
1 ,

which implies that for ξ ∈ H1(Γj−1)

−〈
∂wj−1

∂νj−1,j
, ξ〉Γj−1

= L0,0〈∇yφ
E
0 ,∇yξ〉Γj−1

+ L0,1〈∇yφ
E
1 ,∇yξ〉Γj−1

+ (−k2L0,0 +M0,0)〈φ
E
0 , ξ〉Γj−1

+ (−k2L0,1 +M0,1)〈φ
E
1 , ξ〉Γj−1

.

Since the corresponding finite element approximations g, u0 and u1 satisfy

1

2
Mg = (L0,0S+(−k2L0,0+M0,0)M)u0+(L0,1S+(−k2L0,1+M0,1)M)u1, (6.2)
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Figure 3: Number of GMRES iterations vs. CRBC orders with
(np, ne) =(4,2),(6,3),(8,3),(10,4),(12,4) and (14,5).

we can construct the right-hand-side vector of the finite element problem for
(6.1). Here it is worth pointing out that we might use approximate Neumann
data by using the first or second order backward difference formulas (BDF
or BDF2) but they introduce another approximation error to solutions, which
results in slow convergence of GMRES iterations as will be seen in numerical
experiments.

In the left sweeping process of Step II, we solve the problems (5.19) and

(5.20). In this case, the solution space V and test space Ṽ are defined by

V = {(u,ΦW ) ∈ H1(Ωj)× (H1(Γj−1))
P+2 : u = φW

0 on Γj−1},

Ṽ =

{
{(u,ΦW ) ∈ V : u = 0 on Γj} if 1 ≤ j < L,
V if j = L.

We seek for weak solutions (zj ,Φ
W ) ∈ V to (5.19) such that zj = zj+1 on Γj (if

j 6= L) and

Apc((zj ,Φ
W ), (ξ,ΨW )) = (−fj, ξ)Ωj + 〈gj−1, ξ〉Γj−1

for (ξ,ΨW ) ∈ Ṽ,

where

Apc((u,Φ
W ), (ξ,ΨW )) = (∇u,∇ξ)Ωj − k2(u, ξ)Ωj

+ 〈L∇yΦ
W ,∇yΨ

W 〉Γj−1
+ 〈(−k2L+M)ΦW ,ΨW 〉Γj−1

.

7. Numerical experiments

We first consider the model problem

∆u+ k2u = f in Ω,

∂u

∂ν
= 0 on Ω \ Γ̄0 and

∂u

∂ν
= T (u) on Γ0,

(7.1)
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Figure 4: Number of GMRES iterations: (a), (b) vs. mesh density (q = 2, 4, 6, 8, and 10) with
CRBC order (np, ne) = (1, 0) and (np, ne) = (4, 3), respectively (c) vs. number of subdomains
for k = 128, 256, 300 with the CRBC of order (np, ne) = (4, 3) and q = 2.

where Ω = (0, 1)× (0, 1) ⊂ R2 and f is a point source at two points (0.0312, 0.6)
and (0.3245, 0.4). The optimized double sweep Schwarz method is tested for
solving the above problem for k = 10, 15, . . . , 400. The domain Ω is decomposed
into 10 nonoverlapping equal-sized layered subdomains along the x-axis. We
use the finite element library deal.II [23] to find finite element approximations
with mesh size h determined by the rule of thumb that a certain number of
grid points per wave length are required for acceptable accuracy, for instance,
h = 1/(2k) leads to approximately 12 grid points assigned for a wavelength
along the x-axis. It is worth noting that the size of local problems involved in
the right-sweeping process of the algorithm based on CRBC is only half of that
in STDDM proposed in [9].

By using CRBCs of order (np, ne) = (4, 3), (6, 3), (8, 4) and (10, 4) (both
on the interfaces Γj for j = 1, 2, . . . , L − 1 and on the boundary Γ0 of Ω), we
obtain the number of preconditioned GMRES iterations presented in Figure 2
illustrating that they reach the stopping criterion only at 4 or 5 iterations for
most wavenumbers except a few peaks. In these tests, iterations stop when
relative residuals are less than 10−6. Furthermore, it can be seen that the peaks
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Figure 5: Relative residual vs. GMRES iterations with Neumann data obtained by (6.2),
BDF and BDF2.

can be removed by taking higher order CRBCs, and GMRES iterations with
respect to CRBC orders for those wavenumbers pertaining to the peaks are
presented in Figure 3.

For a fixed CRBC, we can also reduce the number of preconditioned GM-
RES iterations by choosing the larger mesh density, that is by introducing a
parameter q for mesh density defined by h = 1/(kq) for q = 2, 4, 6, 8 and 10.
The results with respect to the mesh density (and hence degrees of freedom)
are reported in Figure 4 (a) and (b). In Figure 4(a) for a low-order CRBC of
order (np, ne) = (1, 0), the finer mesh does not guarantee the faster convergence
since the reflection errors dominate the mesh errors in this case however, as seen
in Figure 4(b) for a high-order CRBC of order (np, ne) = (4, 3) generating the
reflection errors ignorable compared with the mesh errors, less iterations are
needed in the finer meshes.

Figure 4(c) shows the number of preconditioned GMRES iterations with
respect to the number of subregions of decomposition of Ω. The domain Ω is
split into 4, 8, 16, and 32 subdomains for k = 128 and 256 and into 5, 10, 15,
20, 25 and 30 for k = 300. It can be seen that the number iterations increase
mildly with the number of subregions

In the next example, we examine the performance of the double sweeping
algorithm in terms of incoming Neumann data obtained by three difference
methods such as the formula (6.2) (based on CRBC), BDF and BDF2. To do
this, we consider the model problem (7.1) with k = 50 but we assume that f = 0
and an incident wave field uin given by

uin(x, y) =
10∑

n=0

eiµnxYn(y)

is coming into the domain Ω through the boundary Γ0. We take the mesh size
h = 1/(2k) and CRBC of order (np, ne) = (4, 1). Figure 6 illustrates the graphs
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Figure 6: Computation of g1 by three different methods: (6.2) based on CRBC, BDF and
BDF2.

of gj on Γj computed by three different methods, (6.2), BDF and BDF2. It
shows that all computations of g1 on Γ1 agree well with the exact g1, however
as the forward sweeping algorithm proceeds their errors are getting larger. It
is observed that the results of (6.2) appear to have a good agreement with the
exact Neumann data even on Γ9 while the results of BDF and BDF2 on Γ9 (in
particular one for BDF) show significant difference from the exact g9, which
results in slow convergence of GMRES iterations. The relative residual with
respect to GMRES iterations for each case can be found in Figure 5, in which
we can see that the GMRES iterations obtained by (6.2) converge much faster
than others obtained by BDF or BDF2.

In the final example, we are concerned with implementation of the opti-
mized double sweep Schwarz method in case that scatterers are placed in the
middle of an infinite waveguide. Let k = 500 and Ω be the complement of
the three square obstacles of width 0.1 on the symmetric axis x = 0 in the
domain (−0.5, 0, 5) × (0, 1) as in Figure 7. The point sources are located at
(−0.3312, 0.6) and (0.3245, 0.4) and the CRBCs of order (np, ne) = (4, 3) are
imposed on the artificial boundaries on x = ±0.5. We decompose the compu-
tational domain Ω into 2L − 1 subdomains in a way that three obstacles are
included in a single subregion ΩL = ΩL, the subregions on the left side of ΩL
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Figure 7: Snapshot of the real part of wave fields generated by point sources when three
square obstacles are placed in the infinite waveguide R× (0, 1).

are denoted by Ω1,Ω2, . . . ,ΩL−1 and those on the right of ΩL are denoted by
ΩL−1,ΩL−2, . . . ,Ω1. Now, application of Step I of Algorithm 3 to both sides of
ΩL yields the collection of incoming data gj from Ωj and gj from Ωj , and then
we solve the problem in ΩL = ΩL with the incoming data gL−1 and gL−1 on the
left and right boundaries of ΩL, respectively. Finally, with the Dirichlet data
of the solution obtained from the domain ΩL = ΩL we follow the step II of Al-
gorithm 3 on both sides to have the approximate solution in the whole domain
Ω. In this example, the domain Ω is decomposed into 9 subdomains among
which 8 subdomains of width 0.1 are identical and the rest is the rectangular
domain (−0.1, 0.1)×(0, 1) minus the three obstacles. Taking the CRBC of order
(4, 3) and the mesh density q = 2, the preconditioned GMRES iterations satisfy
the relative residual less than the tolerance 10−6 at the third iterate and the
snapshot of the real part of the solution is given in Figure 7.
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