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In this paper, we study the resonance phenomenon arising from the imperfect acoustic cloaking
in 2D based on a small perturbation of the transformation acoustics. We show that resonance
frequencies of the imperfect cloaking appearing in the total scattering cross section converge to
Dirichlet eigenvalues of the concealed region as a perturbation parameter approaches zero. This
theory enables us to predict the location of resonance frequencies of the imperfect cloaking and
identify the corresponding resonance modes.
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Recently, a transformation-based cloaking technique
[1–3] has attracted enormous attention in many areas
such as physics, mathematics and engineerings. The ba-
sic idea of the cloaking technique based on a transforma-
tion is to control wave fields in such a way that they bend
smoothly around objects to be concealed and return to
the original trajectory without producing any scattered
fields. So the objects in the concealed region can be made
invisible from detectors outside of the cloaking devices.
This promising technology has been applied to various
wave fields including electrostatics [1, 2], acoustics [4–9],
electromagnetics [3, 10] and quantum fields [11].
A transformation proposed for the cloaking in R

2 is
obtained by compressing a punctured disc Bb \{0} of ra-
dius b radially to a concentric cylindrical shell Bb \ B̄a

bounded by circles of radii a and b, Γa and Γb, respec-
tively, with 0 < a < b. Mathematically, the compression
is introduced by a singular transformation [11, 12]

F (x) =

(

b− a

b
|x|+ a

)

x

|x|
for 0 < |x| < b, (1)

which blows up the center of Bb to the circle Γa. Then the
acoustic pressure u satisfies the generalized Helmholtz
equation

K∇ · ρ−1∇u+ k2u = 0 in Bb \ B̄a, (2)

where k is the wavenumber in the host medium, K and
ρ represent bulk modulus and mass density tensor of the
cloaking material, respectively. They are the material
parameters induced by bringing the trivial material prop-
erties of Bb into Bb \ B̄a via the transformation F . They
are given by

ρr = r/(r − a), (3)

ρθ = (r − a)/r, (4)

K = ((b− a)/b)
2
× r/(r − a) (5)
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in cylindrical coordinates [5, 9].

Because of the singularity of the material parameters
in the cloaking layer (a component of the mass density
tensor is infinity on the inner boundary of the cloaking
layer), it is challenging or impossible to fabricate the de-
sired material in practice. To avoid the singular nature of
the ideal cloaking scheme, an approximate cloaking tech-
nique has been proposed by using a small perturbation of
the singular transformation, which maps the cylindrical
layer Bb \ B̄ε to Bb \ B̄a with ε > 0 much smaller than
the wave length of probing waves [18].

To quantify the effect of the approximate cloaking for
various perturbation parameters and wavenumbers, the
total scattering cross section (TSCS) has been investi-
gated [13, 14]. The TSCS is obtained by integrating the
far-field amplitude over all azimuthal angles and repre-
sents the total scattered power when the incident field is
a plane wave with the unit amplitude. In Ref. [15, 16],
the TSCS is also importantly utilized for measurement of
the efficiency of the multi-layered realization [8, 17] of the
ideal cloaking. In the references mentioned above, reso-
nance phenomena are observed in the TSCS spectrum of
the cloaking devices with air placed in the cloaked re-
gion. As resonances are one of major sources of noises, it
is crucial to understand their origin and be able to predict
their location in the TSCS spectrum in designing cloak-
ing devices. Understanding distribution of wave fields of
resonance frequencies in the concealed region is also of
importance in developing an application such as sound
insulation based on the cloaking scheme. In Ref. [13] it
is realized that the resonance phenomenon is an inherent
character of the cloaking devices when concealing pene-
trable media by investigating the scattering coefficients
of scattered fields. However, the identification of reso-
nance frequencies and the shape of corresponding reso-
nance modes has not been clarified yet. In this paper,
we analyze resonance frequencies of the imperfect cloak-
ing based on a perturbed transformation and identify the
shape of corresponding resonance modes. More precisely,
we theoretically show that resonance phenomena of the
imperfect cloaking arise near Dirichlet eigenvalues of the
concealed region.

We first investigate the total scattering cross section
(TSCS) of the approximate cloaking in R

2 based on a



2

small perturbation of the transformation acoustics [18].
Assume that a plane incident field uin with an amplitude
p0 is propagating along the x-direction:

uin = p0e
ikx = p0

∞
∑

n=−∞

inJn(kr)e
inθ (6)

in cylindrical coordinates (r, θ). Let fε(r) = (b − ε)(r −
b)/(b− a)+ b for a < r < b be the inverse function of the
radial function involved in the perturbed transformation
[18]. Then the scattered fields usc outside of the cloaking
structure, the fields ush in the cloaking shell and trans-
mitted fields utr into the cloaked region can be written
as


















































utr = p0

∞
∑

n=−∞

anJn(kr)e
inθ for r < a,

ush = p0

∞
∑

n=−∞

(inJn(kfε(r)) + bnH
1
n(kfε(r)))e

inθ

for a < r < b,

usc = p0

∞
∑

n=−∞

bnH
1
n(kr)e

inθ for r > b,

(7)
where Jn is the Bessel function of order n and H1

n is the
Hankel function of order n and of the first kind. Here
the coefficients an and bn are constants to be determined
by the continuity of pressure fields and normal flux on
the interface, r = a, between the cloaked region and the
cloaking layer, that is, an and bn are solutions to the
system of equations

[

−ε(H1
n)

′(kε) aJ ′
n(ka)

−H1
n(kε) Jn(ka)

] [

an
bn

]

= in
[

εJ ′
n(kε)

Jn(kε)

]

. (8)

A simple computation yields that

an = −2in/(πkdn,ε), (9)

bn = −in(aJ ′
n(ka)Jn(kε)− εJ ′

n(kε)Jn(ka))/dn,ε, (10)

where dn,ε is the determinant of the matrix

dn,ε = aJ ′
n(ka)H

1
n(kε)− ε(H1

n)
′(kε)Jn(ka). (11)

Now, the TSCS is given by integration of the far-field
amplitude and can be represented by the series in terms
of scattering coefficients,

TSCS =
4

k

∞
∑

n=−∞

|bn|
2. (12)

The graphs of TSCS for ε = 0.1, 0.01 and 0.001 up to
ka = 11 are given in Fig. 1, from which it is observed that
many resonance peaks or dips occur in the TSCS spec-
trum. Clearly, the TSCS gets smaller as ε approaches
zero except for resonance frequencies, as expected from
the theoretical analysis [12]. Another observation is that
there are quite narrow resonance peaks, N21, N22, N31
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FIG. 1. Graph of TSCS. The solid, dashed, dotted (and dash-
dotted in the bottom) curves correspond to the graphs of the
TSCS for ε = 0.1, 0.01, 0.001 (and 0.0001) respectively.
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FIG. 2. Contour plots of |dn,ε(λ)| on the λ-plane for a = 1,
ε = 0.1 and n = 0, 1, 2. The zeros of dn,ε(λ) = 0 can be
estimated by examining centers of the concentric circles of
coutour plots.

and N32 of the black solid curve and N01, N02 and N03
of the blue dashed curve. It is found that higher resolu-
tion near some of the narrow resonance peaks is required
for the presentation of the plot, which shows that reso-
nances from the cloaking structure is extremely sensitive
to wavenumbers for small ε.

Our goal is to understand how resonance frequencies
behave as a function of the perturbation parameter ε and
to predict the location of resonance frequencies. The res-
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onance frequency k is thought of as the real part of a
complex resonance eigenvalue λ, for which the cloaking
system has a non-zero solution, that is, k = ℜ(λ) is a
resonance frequency if and only if dn,ε(λ) = 0. Fig. 2
exhibits the contour plots of the function |dn,ε(λ)| on
the λ-plane for ε = 0.1 and n = 0, 1, 2 when a = 1,
which allows us to estimate the location of complex res-
onance eigenvalues. Here, we recall that Dirichlet eigen-
values of the concealed unit disc are given by zeros of
Jn. The plot in Fig. 2(b) displays the contours when
n = 1, from which it can be deduced that zeros of the
equation d1(λ) = 0 are located around the zeros of J0,
2.4048, 5.5201 and 8.6537 (displayed with the only four
significant digits). They correspond to N01, N02 and
N03 in Fig. 1, respectively. Similarly, the third plot in
Fig. 2(c) shows that zeros of d2(λ) = 0 are located around
zeros of J1, 3.8317, 7.0156 and 10.1735, corresponding to
N11, N12 and N13 in Fig. 1, respectively. From the first
plot in Fig. 2(a) for n = 0, it can be seen that zeros of
d0(λ) = 0 except the leftmost one appear at the loca-
tions close to zeros of J1 as in the case of n = 2. More
generally, it can be shown that zeros of d±n,(λ) = 0 ap-
proach zeros of J±(n−1)(aλ) = 0 for n ≥ 0 as ε → 0,
in other words, the resonance frequency of order n(≥ 0)
appears near an eigenvalue of order n− 1 of the cloaked
region. To do this, using the identity of Bessel func-
tions, C−n = (−1)nCn for Cn = Jn or H1

n, it suffices to
prove the convergence of zeros of dn,ε(λ) = 0 to those of
Jn−1(aλ) = 0 for n ≥ 0. The identity of Bessel functions
C′
n(z) = Cn−1(z)− n/zCn(z) [19] transforms dn,ε(λ) = 0

to

Dn,ε(λ) ≡
aJn−1(aλ)

Jn(aλ)
−

εH1
n−1(ελ)

H1
n(ελ)

= 0. (13)

Now, since εH1
n−1(ελ)/H

1
n(ελ) → 0 as ε → 0 [19],

Dn,ε(λ) is a small analytic perturbation of the function
aJn−1(aλ)/Jn(aλ) for small ε. Thus the perturbation
theory proves the convergence of zeros of dn,ε(λ) = 0 to
those of Jn−1(aλ) = 0 as ε → 0.

The convergence behavior of the first three resonance
eigenvalues for n = 0, 1, 2 as a function of ε is illustrated
in Fig. 3. It shows that the convergence rate for n = 0 is
slower than that for other order n 6= 0 since the Hankel
function of the zeroth order has the logarithmic singu-
larity at the origin. From this fact, we can predict the
location of resonance frequencies of the imperfect cloak-
ing devices and identify the shape of the corresponding
resonance modes. It is worth noting that the eigenvalue
of the cloaked region of order 1 is approached by reso-
nance frequencies of two different orders 0 and 2, while
the eigenvalues of order n 6= 1 is approached by resonance
frequencies only of order n−1. This unique phenomenon
associated with the eigenvalue of the cloaked region of
order 1 can be found as resonance peaks and dips N11,
N12 and N13 in the TSCS spectrum of Fig. 1 in contrast
to single peaks for other eigenvalues.
Now, we conduct numerical calculations for resonance

modes with a = 1 when a plane wave of the unit am-
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FIG. 3. Errors of the resonance eigenvalues as functions of ε
for n = 0, 1, 2 when a = 1

plitude travels from the left to the right along the x-
direction. The snapshots of different resonance modes
N02, N12A and N12B in Fig. 1 of the imperfect cloak-
ing with ε = 0.0001 are presented in Fig. 4. The left
of the plots illustrates total fields in the region contain-
ing the cloaking device. It is observed that when the
wavenumber k is set to be a resonance frequency, trans-
mitted fields into the concealed region are highly excited
as already reported in Ref. [13]. In order to examine the
cloaking effect for scattered fields, the exterior pressure
fields outside of the disc B1.02 of radius 1.02 are also pro-
vided in the right of the plots.
For the first case, we choose k = 5.5201 corresponding

to the N02 mode, which is located near a zero of J0. Since
the denominator d1 of the first order coefficients nearly
vanishes in the vicinity of k, the first order cylindrical
wave term is significantly resonated and consequently a
dipole mode appear near the zero of J0 as depicted in
Fig. 4(b).
For the second case, we investigate a resonance peak

N12B (k = 7.0340) and dip N12A (k = 7.0156). The
snapshots of total pressure fields are provided in Fig. 4
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FIG. 4. Snapshots of acoustic pressure fields of the imperfect
cloaking with ε = 0.0001: total pressure fields on the whole
region (left) and outside of the disc B1.02 of radius 1.02 (right)

(c) and (d). The observation obtained from the left snap-

shots of Fig. 4 (c) and (d) is that almost perfect cloak-
ing can be achieved for the N12A mode while the per-
formance of the cloaking for the N12B mode is notice-
ably weakened, which is consistent with the fact that the
N12A mode arises at the dip of TSCS and the N12B
mode does at the peak. The same computational result
can be found in Ref. [13]. Next, we see that the N12A
mode exhibits an excited quadrupole resonance and the
N12B mode does a monopole resonance. This fact can be
explained as follows. We first note that the wavenumber
k0 = 7.0156 (a zero of J1 displayed with only four signif-
icant digits) is approached by two zeros of d2 and d0 as
ε → 0. The zero of d2 converges to k0 much faster than
the zero of d0 as indicated in Fig. 3, which implies that
the second order cylindrical wave term is excited at the
frequency of N12A showing a quadrupole resonance and
the zeroth order cylindrical wave term is enhanced at the
frequency of N12B resulting in a monopole resonance. It
is worthy of remark that monopole and quadrupole reso-
nance modes always appear near each other in the TSCS
spectrum.
In conclusion, we have studied the resonance phe-

nomenon arising from the imperfect cloaking based on a
small perturbation of the transformation acoustics. It is
verified that resonance frequencies are close to Dirichlet
eigenvalues of the concealed region when the perturba-
tion parameter ε is sufficiently small. In particular, the
n-th order cylindrical wave term is resonantly excited at
frequencies near zeros of Jn−1(aλ) = 0. Also, the com-
putational results demonstrate that resonance modes are
almost trapped near the cloaked region. This theory en-
ables us to predict not only the location of resonance fre-
quencies but also the shape of corresponding resonance
modes. We expect this theory may be used to develop a
cloaking structure that can avoid resonance phenomena
and improve the cloaking effect.
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