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Abstract

In this paper, we consider a Cartesian PML approximation to resonance
values of time-harmonic problems posed on unbounded domains in R

2. A
PML is a fictitious layer designed to find solutions arising from wave prop-
agation and scattering problems supplemented with an outgoing radiation
condition at infinity. Solutions obtained by a PML coincide with original
solutions near wave sources or scatterers while they decay exponentially as
they propagate into the layer. Due to rapid decay of solutions, it is natural
to truncate unbounded domains to finite regions of computational interest.
In this analysis, we introduce a PML in Cartesian geometry to transform a
resonance problem (characterized as an eigenvalue problem with improper
eigenfunctions) on an unbounded domain to a standard eigenvalue problem
on a finite computational region. Truncating unbounded domains gives rise
to perturbation of resonance values, however we show that eigenvalues ob-
tained by the truncated problem converge to resonance values as the size of
computational domain increases. In addition, our analysis shows that this
technique is free of spurious resonance values provided truncated domains are
sufficiently large. Finally, we present the results of numerical experiments
with simple model problems.
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1. Introduction

In this paper we will analyze perfectly matched layer (PML) approx-
imation based on Cartesian geometry to resonance values of problems on
unbounded domains in R

2. Research on resonances in open systems has
been extensively developed because of their many potential applications. For
example, applications of acoustic resonance include designing musical instru-
ments such as violins and guitars [13, 23] and determining frequencies of
acoustic noise arising from an airplane wing and its slat and flap (see [21] and
reference therein). The other example is photonic resonances and they take
place in special structures of dielectric materials. It is known that periodic
dielectric structures (photonic crystals) can prohibit waves of frequencies in
a particular range (called a photonic band gap or PBG) from propagating in
the structures [25, 30, 34]. While the ideal photonic crystals have an infinite
periodic pattern, in a practical application dielectric materials are arranged
in a periodic pattern to a finite extent [15, 35]. If a defect is introduced in the
structures, then they may produce localized resonance modes of frequencies
in PBG. This unique properties of photonic crystals allow many applications
including lasers, waveguides, optical filters and optical communications.

In this paper, for acoustic models we consider a problem to find complex
wavenumbers k for which there exists a nonzero solution u satisfying

∆u+ k2u = 0 in Ω̄c,

u = 0 on Γ
(1.1)

with an outgoing radiation condition at infinity, which will be discussed be-
low. Here Ω is a bounded scatterer with a Lipschitz boundary Γ and we
denote the complement of the closure of Ω in R

2 by Ω̄c := R
2 \ Ω̄.

For photonic resonance models, we consider two basic polarizations of
electromagnetic equations with dielectric materials contained in a bounded
region of R2. In case of the TE polarization, magnetic fields satisfy the scalar
Helmholtz equation

∇ · 1
ε
∇u+ k2u = 0 in R

2 \ ∂G,
u− − u+ = 0 on ∂G,

1

ε−
∂u−

∂n
− 1

ε+
∂u+

∂n
= 0 on ∂G,

(1.2)
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where G is a finite-sized periodic dielectric material and ε is a dielectric
constant of the photonic structure such that ε = ε+ = 1 on the background
material and ε = ε− on G. Also, u+ and u− represent the restriction of the
function u to R

2 \ Ḡ and G respectively, and in the transmission conditions
on ∂G, u± and ∂u±/∂n are understood as their traces on ∂G with n the
outward unit normal vector on the boundary of G.

For the TM polarization, electric fields satisfy

∆u+ k2εu = 0 in R
2 \ ∂G,

u− − u+ = 0 on ∂G,

∂u−

∂n
− ∂u+

∂n
= 0 on ∂G.

(1.3)

As in the acoustic model problem (1.1), the model problems (1.2) and
(1.3) require an outgoing radiation condition at infinity. In this paper, for
| arg(k)| < π a solution u ∈ H1

loc(Ω̄
c) to the Helmholtz equation is said to

be an outgoing solution if u has a series representation in terms of Hankel
functions of the first kind

u(x) =
∞∑

n=−∞
anH

1
n(k|x|)einθx for |x| > r0 (1.4)

for some r0 > 0, where θx = arg(x) and H1
n are Hankel functions of the first

kind of order n [1, 32]. Now, we are interested in k for which the model
problems have nonzero solutions and such a k is called a resonance.

In the acoustic scattering theory, it is known that for k with Im(k) ≥ 0,
the outgoing radiation condition given by a series (1.4) is equivalent to the
Sommerfeld radiation condition

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0 (1.5)

with r = |x| (see e.g, [10]). Furthermore, by using variational arguments one
can show that the Helmholtz equation with Im(k) ≥ 0 supplemented with
the Sommerfeld radiation condition (1.5) has a unique solution [11]. There-
fore resonance values have necessarily a negative imaginary part. Due to this
fact and the outgoing radiation condition (1.4) together with an asymptotic
behavior of Hankel functions of the first kind (3.8), one can show that reso-
nance functions are not square integrable. Hence they can be thought of as
improper eigenfunctions.
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A PML is an artificial absorbing layer surrounding the area of computa-
tional interest. This fictitious layer can be introduced by a certain complex
coordinate stretching in a way that solutions obtained by the method are
preserved outside of PML and decay exponentially in the layer. So it is nat-
ural to truncate unbounded domains to a finite region, which allows one to
apply standard computational techniques, e.g., finite element methods. Since
Bérenger proposed a PML method to study electromagnetic waves [4, 5] in
time domain, many accurate and efficient variants of PML were applied to
many different areas such as acoustics [6, 31], elastics [8, 19, 18] and electro-
magnetics [6, 7, 9] in time domain and frequency domain.

Also, PML methods have successfully employed for computing acoustic
resonances [21, 20] and photonic resonances [17, 24]. A PML technique de-
forms the original resonance problem to a standard eigenvalue problem posed
on a bounded domain in the following steps

(i) resonance problem (problem with improper eigenfunctions),

(ii) eigenvalue problem posed in an unbounded domain (infinite PML prob-
lem),

(iii) eigenvalue problem posed in a bounded domain (truncated PML prob-
lem).

Applying a coordinate stretching associated with PML transforms the origi-
nal resonance problem (i) to an eigenvalue problem in an unbounded domain
(ii). Truncating the unbounded domain of the problem (ii) results in an eigen-
value problem in a bounded domain (iii). In converting the problem (i) to the
problem (ii), resonance values in a region of interest turn out to be eigenval-
ues of the infinite PML problem. The domain truncation however perturbs
eigenvalues of the infinite PML problem. Most literature mentioned above
demonstrated computationally that the perturbation resulting from domain
truncation can be as small as we wish by increasing the domain size. In
this paper we will provide a theoretical convergence analysis of approximate
resonance values obtained by Cartesian PML. We remark that there is an
analysis for convergence of approximate resonance values in a spherical PML
framework in [27].

The analysis in this paper proceeds based on the ideas used in [27]. How-
ever, there are difficulties in carrying out the ideas directly in Cartesian PML.
In case of spherical PML [27], we observe that a Laplace operator deformed
by spherical PML used in [27] is reduced to a Laplace operator multiplied by
a complex constant coefficient outside of a compact set. This property plays
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an important role for deriving stability estimates of solutions to spherical
PML Helmholtz equation. In contrast, since Cartesian PML uses direction
dependent coordinate stretching functions, Cartesian PML Laplace operators
do not have the same property. To overcome this difficulty, we use the spec-
tral structure of a Cartesian PML Laplace operator investigated in [29] and
develop the same stability analysis for Cartesian PML Helmholtz equation.

Solutions to spherical PML Helmholtz equations have a series representa-
tion resembling (1.4) in terms of Hankel functions, which is a main ingredient
for establishing a one-to-one correspondence between resonance values and
eigenvalues of infinite spherical PML problems. However, solutions to Carte-
sian PML problems do not have a series representation. In this analysis,
alternatively we derive an integral representation of solutions to Cartesian
PML Helmholtz equations by using Green’s theorem and the fundamental
solution to the Cartesian Helmholtz equation. The integral representation
will be used to find a connection between resonance values and eigenvalues
of infinite Cartesian PML problems.

As mentioned in [27], a convergence analysis of approximate resonance
values of PML methods needs to be done in a non-standard way unlike clas-
sical perturbation theory, e.g., [26]. Indeed, in classical perturbation theory,
it can be shown that eigenvalue convergence is a result of norm convergence
of approximate operators. In our case, inverse operators of truncated PML
operators are compact but those for infinite PML operators are not, which
implies that truncated PML operators can not converge to infinite PML op-
erators. Thus, our analysis of eigenvalue convergence is developed based on
the property of eigenfunctions, that is exponential decay of eigenfunctions.

The remainder of this paper is organized as follows. In Section 2, we
reformulate model problems by applying a Cartesian PML. Section 3 pro-
vides a fundamental solution to the Cartesian PML Helmholtz equation and
its exponential decay. Integral representations of solutions to the Helmholtz
equation satisfying an outgoing radiation condition and the Cartesian PML
Helmholtz equation are given in Section 3. We use the integral representa-
tions to derive a one-to-one correspondence between resonance values in a
region of interest and eigenvalues of the reformulated problems in Section
4. Section 5 verifies inf-sup conditions of Cartesian PML problems on both
infinite domains and truncated domains. A convergence analysis for eigenval-
ues of the truncated Cartesian PML Helmholtz equation is given in Section
6. Numerical experiments in Section 7 illustrate a behavior of eigenvalues
obtained by Cartesian PML methods.
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2. Cartesian PML reformulation

From here on, we will give the detail only of the acoustic model (1.1)
for simple presentation. In order to define a Cartesian PML, we shall use a
sequence of strictly increasing square domains Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ Ωδ, where
Ωj = (−aj, aj)2 for j = 0, 1, 2 and Ωδ = (−δ, δ)2. We assume that Ω ⊂ Ω0.
Also, Γj denotes the boundary of Ωj for j = 0, 1, 2 and δ. A Cartesian PML
can be introduced in terms of a formal complex coordinate shift in Cartesian
coordinates via an even function σ̃ ∈ C2(R) satisfying

σ̃(t) = 0 for |t| ≤ a1,

σ̃(t) : increasing for a1 < t < a2,

σ̃(t) = σ0 for |t| ≥ a2.

(2.1)

Here σ0 is a positive constant that represents a PML strength. The smooth-
ness of σ̃ is required for results of a spectral structure of the Cartesian PML
Laplace operator in [29] but this restriction does not cause any problem in
numerical computations. A Cartesian PML is defined by the coordinate
stretching (x̃1, x̃2) for (x1, x2) ∈ R

2, where

x̃(t) ≡ t(1 + iσ̃(t)) for t ∈ R and x̃j ≡ x̃(xj) for j = 1, 2.

The following functions and constants will be used throughout the paper.

σ(t) ≡ (tσ̃(t))′ for t ∈ R,

d(t) ≡ (x̃(t))′ = 1 + iσ(t) for t ∈ R,

d0 ≡ 1 + iσ0,

where ′ represents the derivative with respect to t. We note that the coordi-
nate stretching function can be written in the equivalent form used elsewhere

x̃(x) = x+ i

∫ x

0

σ(t) dt.

We see here that the coordinate stretching takes real variables (x1, x2) ∈ R
2 to

complex variables (x̃1, x̃2) = (x̃(x1), x̃(x2)) ∈ C
2. Specifically, the imaginary

part xjσ̃(xj) of each component becomes nonzero for |xj| > a1 and it plays a
crucial role for PML solutions to decay exponentially in the perfectly matched
layer.
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Remark 2.1. For an application where a scatterer Ω has a large aspect ratio,
it is more efficient in terms of computational costs to choose a sequence of
rectangles fitting Ω and use direction dependent coordinate stretchings. For
example, we use the functions σ̃k for k = 1, 2 satisfying

σ̃k(t) = 0 for bk,1 ≤ t ≤ ak,1,

σ̃k(t) : increasing for ak,1 < t < ak,2,

σ̃k(t) : decreasing for bk,2 < t < bk,1,

σ̃k(t) = σright
k,0 for t ≥ ak,2,

σ̃k(t) = σleft
k,0 for t ≤ bk,2,

for some bk,2 < bk,1 < 0 < ak,1 < ak,2 and σleft
k,0 , σ

right
k,0 > 0. However since the

analysis for the simple case can be carried out in general settings without
essential changes, the analysis in this presentation is restricted to the simple
case.

Now, the Cartesian PML Laplace operator is defined by

∆̃ ≡ 1

d(x1)

∂

∂x1

(
1

d(x1)

∂

∂x1

)
+

1

d(x2)

∂

∂x2

(
1

d(x2)

∂

∂x2

)
=

1

J
∇ ·H∇,

where

J(x) ≡ d(x1)d(x2),

H(x) ≡
[
d(x2)/d(x1) 0

0 d(x1)/d(x2)

]
.

As a weak form of −∆̃, we introduce an unbounded operator L̃ : H−1(Ω̄c) →
H−1(Ω̄c) with domain H1

0 (Ω̄
c) defined for u ∈ H1

0 (Ω̄
c) by L̃u = f , where

f ∈ H−1(Ω̄c) is given by

< f, J̄φ >= A(u, φ) for all φ ∈ H1
0 (Ω̄

c). (2.2)

Here < ·, · > is the duality pairing and

A(u, v) =

∫

Ω̄c

H∇u · ∇v̄ dx for all u, v ∈ H1
0 (Ω̄

c). (2.3)
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By the definition of σ̃, we observe that 0 ≤ σ(t) ≤ σM for some σM and it
then follows that d(t) is in the set {z ∈ C : Re(z) = 1, 0 ≤ Im(z) ≤ σM}.
Setting θM = arg(1 + iσM), it is easy to show that

Re(d(t)/d(s)) ≥ c0 and Re(e−iθMd(t)d(s)) ≥ c0 for all t, s ∈ R

for c0 = 1/(1+σ2
M ). This implies that for z0 = −e−iθM and for all u ∈ H1(Ω̄c)

c0‖∇u‖2L2(Ω̄c) ≤ |A(u, u)|,
c0‖u‖2H1(Ω̄c) ≤ |A(u, u)− z0(Ju, u)Ω̄c | ,

(2.4)

where (·, ·)D denotes the L2-inner product on the domain D.

The spectrum (the complement of the resolvent set of L̃) of the operator

L̃, especially essential spectrum, is investigated in [29]. Among other notions

of essential spectrum (see e.g., [12]), the definition of essential spectrum of L̃
is given by the set of points in the spectrum excluding those in discrete eigen-
values of L̃ (isolated points of spectrum with finite algebraic multiplicity).
The main result (Theorem 4.6) of [29] is that if we denote

E = {z ∈ C : arg(z) = −2 arg(1 + iσ0)}, (2.5)

then the essential spectrum of L̃ is contained in E. Discrete eigenvalues of
L̃ are k2 such that there exists a nonzero solution u ∈ H1

0 (Ω̄
c) satisfying

(L̃− k2I)u = 0. (2.6)

The following sections will reveal that resonance values in the sector S be-
tween E and the positive real axis,

S ≡ {z ∈ C : −2 arg(1 + iσ0) < arg(z) < 0}. (2.7)

are in fact eigenvalues of L̃, from which we observe that the resonance prob-
lem becomes an eigenvalue problem (2.6) of the operator L̃ on H−1(Ω̄c).

3. Fundamental solution to the Cartesian PML Helmholtz equa-

tion

In this section, we find the fundamental solution to the Cartesian PML
Helmholtz equation in terms of the fundamental solution to the Helmholtz
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equation and a certain complexified distance r̃(x, y). Also, we study expo-
nential decay of the fundamental solution for k2 ∈ S with Im(k) < 0. Let
Φ(r) = i

4
H1

0 (kr) be the fundamental solution to the Helmholtz equation.
With ỹj = x̃(yj) for y = (y1, y2) ∈ R

2, the complexified distance r̃(x, y)
between x̃ = (x̃1, x̃2) and ỹ = (ỹ1, ỹ2) is defined by

r̃(x, y) ≡
√

(x̃1 − ỹ1)2 + (x̃2 − ỹ2)2. (3.1)

Here we take the negative real axis for the branch cut of the square root.
The well-definedness and an important property of the complexified distance
r̃ are given in the following lemma.

Lemma 3.1. (See [28, Lemma 3.1, Lemma 3.3]) Let x, y ∈ R
2 with x 6= y.

Then, there exists a small constant ε > 0 such that

0 ≤ arg((x̃1 − ỹ1)
2 + (x̃2 − ỹ2)

2) < π − ε. (3.2)

Therefore, r̃(x, y) is well-defined. In addition, there exists positive constants
Cr1 and Cr2 such that

Cr1|x− y| ≤ |r̃(x, y)| ≤ Cr2|x− y|.

Then the fundamental solution to the Cartesian Helmholtz equation is
defined by

Φ̃(x, y) = J(y)Φ(r̃(x, y))

and its proof is given in [28].

Theorem 3.2. (See [28, Theorem 3.4, Remark 3.8, Lemma 3.9]) The func-

tion Φ̃(x, y) satisfies

u(x) = −
∫

R2

((∆̃y + k2I)u(y))Φ̃(x, y) dy (3.3)

for all u ∈ H2(R2). In addition, for x 6= y, Φ(r̃(x, y)) solves the Cartesian
PML Helmholtz equation,

(∆̃y + k2I)Φ(r̃(x, y)) = 0.

To study exponential decay of Φ̃ for k2 ∈ S with Im(k) < 0, we need one
more property of r̃(x, y) regarding convergence of arg(r̃) as ‖x− y‖∞ → ∞.
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r2 sin(θ2 − θ1)

r2 cos(θ2 − θ1)r1

r2

ζ θ2 − θ1

e−iθ1 r̃2

Figure 1: Geometry of three complex numbers after rotating by −θ1

Lemma 3.3. For any ε > 0 there exists a positive constant Marg such that
if ‖x− y‖∞ > Marg, then

| arg(r̃)− arg(d0)| < ε. (3.4)

Proof. We first claim that for ε > 0 there exists a positive constant M1 such
that if t− s > M1 for t, s ∈ R, then

| arg(x̃(t)− x̃(s))− arg(d0)| < ε. (3.5)

To prove the convergence of arg(x̃(t)− x̃(s)), we note that

arg(x̃(t)− x̃(s)) = tan−1

(
tσ̃(t)− sσ̃(s)

t− s

)
and arg(d0) = tan−1(σ0).

By the continuity of tan−1, it suffices to show that for ε > 0 there exists a
positive constant M2 such that if t− s > M2, then

∣∣∣∣
tσ̃(t)− sσ̃(s)

t− s
− σ0

∣∣∣∣ < ε. (3.6)

For t and s with |t|, |s| ≥ a2, clearly we have (3.6) with the vanishing left
hand side. Therefore, we need to consider only the case that |s| < a2 and
t is a positive large number. For such s, since |s| and |sσ̃(s)| are bounded,
we can choose M2 > 0 such that the inequality (3.6) holds for t > M2 − a2.
Then (3.6) holds if t− s > M2.

Now, let θj = arg((x̃j − ỹj)
2) and rj = |(x̃j − ỹj)

2| for j = 1, 2. Suppose
that |x2 − y2| < M1. A simple computation (see Figure 1) shows

arg(r̃2) = ζ + θ1,

where

ζ = tan−1

(
r2 sin(θ2 − θ1)

r1 + r2 cos(θ2 − θ1)

)
.
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Here ζ is an angle between −π/2 and π/2 for large r1. Since r2 is bounded
for |x2 − y2| < M1, we observe that ζ → 0 and θ1 → arg(d20) as |x1 − y1|
approaches infinity. Thus, we can choose a large Marg > M1 such that

| arg(r̃2)− arg(d20)| < 2ε (3.7)

for |x1−y1| > Marg and |x2−y2| < M1. By the same argument as above, the
inequality (3.7) holds for the other case, |x2−y2| > Marg and |x1−y1| < M1.

Finally, to prove (3.4), suppose that ‖x−y‖∞ > Marg. If both |xj−yj| for
j = 1, 2 are larger thanM1, then from (3.5) it follows that |θj−arg(d20)| < 2ε
for j = 1, 2. Since the set {z ∈ C : | arg(z)− arg(d20)| < 2ε} is closed under
addition, (3.4) immediately follows. On the other hand, if one of |xj − yj| is
less than M1, then since the other is larger than Marg, the inequality (3.7)
holds and so does (3.4), which completes the proof.

For exponential decay of Φ̃, the following asymptotic behavior of Hankel
function of the first kind of the zeroth order at infinity is required. For large
|z|, one can show that

H1
0 (z) =

(
2

πz

)1/2

ei(z−π/4)

(
1 +O

(
1

z

))
for | arg(z)| ≤ π − ε,

H1
0
′
(z) =

(
2

πz

)1/2

ei(z+π/4)

(
1 +O

(
1

z

))
for | arg(z)| ≤ π − ε

(3.8)

with arbitrary small ε > 0 [1, 32].

Lemma 3.4. Assume that k2 ∈ S and Im(k) < 0. Then there exist positive
constants α, C and Mf such that

|Φ(r̃)| and |∂Φ(r̃)/∂yj| < Ce−α|x−y| for j = 1, 2, (3.9)

for ‖x− y‖∞ > Mf , where r̃ = r̃(x, y).

Proof. By (3.8) and Lemma 3.1, there exists a constant Md such that

|H1
0 (kr̃)| and |H1

0
′
(kr̃)| ≤ Ce−Im(kr̃) for ‖x− y‖∞ > Md. (3.10)

For ε = 1
2
arg(kd0) > 0, by Lemma 3.3 there exists a positive Marg such

that if ‖x− y‖∞ > Marg, then

arg(d0)− ε < arg(r̃) < arg(d0) + ε
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so that
ε = 1

2
arg(kd0) < arg(kr̃) < 3

2
arg(kd0) <

3π
4

As a consequence, using Lemma 3.1 for ‖x− y‖∞ > Marg

e−Im(kr̃) = e−|kr̃| sin(arg(kr̃)) ≤ e−α|x−y| (3.11)

for a positive α = Cr1|k|min{sin(ε), sin(3π
4
)}. Finally, applying (3.11) to

(3.10) shows that

|H1
0 (kr̃)| and |H1

0
′
(kr̃)| ≤ Ce−α|x−y| (3.12)

for ‖x−y‖∞ > Mf ≡ max{Md,Marg}. In addition, by Lemma 3.1 and (3.12)

∣∣∣∣
∂H1

0 (r̃)

∂yj

∣∣∣∣ =
∣∣∣∣H

1
0
′
(r̃)

(x̃j − ỹj)(−d(yj))
r̃

∣∣∣∣ ≤ Ce−α|x−y| (3.13)

for ‖x− y‖∞ > Mf , which completes the proof.

4. Integral representation

In this section, we study integral representations of solutions to the
Helmholtz equation satisfying the outgoing radiation condition and the Carte-
sian PML Helmholtz equation.

4.1. Helmholtz equation with the outgoing radiation condition

Theorem 4.1. Assume that k is a complex number with | arg(k)| < π. Let
u ∈ H1

loc(Ω̄
c) be a solution to the Helmholtz equation ∆u + k2u = 0 on Ω̄c.

Then u satisfies the outgoing radiation condition (1.4) if and only if u has
the integral representation

u(x) =

∫

Γ0

[
u(y)

∂Φ(|x− y|)
∂ny

− Φ(|x− y|)∂u(y)
∂ny

]
dSy (4.1)

for x ∈ Ω̄c
0. Here ny is the outward unit normal vector on the boundary of

Ω0.

To find a series expression of functions defined by (4.1), the Graf’s addi-
tion theorem is needed (see e.g., [1, 33]).
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Theorem 4.2. Assume that k is a complex number with | arg(k)| < π. Let
θx = arg(x) and θy = arg(y). Then the following holds:

H1
0 (k|x− y|) =

∞∑

n=−∞
Jn(k|y|)H1

n(k|x|)ein(θx−θy). (4.2)

for x, y ∈ R
2 with |y| < |x|. The series and its first order derivatives as a

function of y converge uniformly on compact subsets of |y| < |x|.

Proof of Theorem 4.1. For large r > r0 (given in (1.4)), let Br be a ball
centered at the origin and of radius r, which contains Ω0. If u is a solution
to the Helmholtz equation, then by the Green’s identity it satisfies

u(x) =

∫

Γ0

[
u(y)

∂Φ(|x− y|)
∂ny

− Φ(|x− y|)∂u(y)
∂ny

]
dSy

−
∫

|y|=r

[
u(y)

∂Φ(|x− y|)
∂ny

− Φ(|x− y|)∂u(y)
∂ny

]
dSy

(4.3)

for x ∈ Ω̄c
0∩Br, where ny is the outward unit normal vector on the boundaries

of Ω0 and Br. To obtain the integral formula (4.1), it suffices to show that
the outer boundary integral vanishes.

To do this, we first show that for |x| < r

∫

|y|=r

[
H1

n(kr)
∂H1

0 (k|x− y|)
∂ny

−H1
0 (k|x− y|)∂H

1
n(kr)

∂ny

]
einθy dSy = 0. (4.4)

Then uniform convergence of (1.4) on any compact subset outside of Br0

proves that the integral on |y| = r vanishes. To prove (4.4), let F (k) denote
the integral of the left hand side of (4.4). F (k) is clearly an analytic function
defined on the region of | arg(k)| < π. Since H1

n(k|x|)einθx for real k > 0
is a solution to the Helmholtz equation satisfying the Sommerfeld radiation
condition (1.5), it follows that F (k) = 0 for real k > 0. Therefore the
analyticity of F (k) shows (4.4) for any k with | arg k| < π.

Conversely, assume that u has the integral expression (4.1). Then, by the
definition of the fundamental solution to the Helmholtz equation, we have

u(x) =
i

4

∫

Γ0

[
u(y)

∂H1
0 (k|x− y|)
∂ny

−H1
0 (k|x− y|)∂u(y)

∂ny

]
dSy (4.5)
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for x ∈ Ω̄c
0. Now, we choose r0 > 0 such that Ω̄0 is strictly contained in Br0 .

For |x| > r0 and y ∈ Γ0, substituting (4.2) in (4.5) leads to

u(x) =
∞∑

n=−∞
anH

1
n(k|x|)einθx for |x| > r0,

where

an =
i

4

∫

Γ0

[
u(y)

(
kJ ′

n(k|y|)
∂|y|
∂ny

− in
∂θy
∂ny

)
− Jn(k|y|)

∂u(y)

∂ny

]
e−inθy dSy,

which completes the proof.

4.2. Cartesian PML Helmholtz equation

Using exponential decay of the fundamental solution to the Cartesian
PML Helmholtz equation, the analogous integral representation for solutions
to the Cartesian PML Helmholtz equation is obtained.

Lemma 4.3. Assume that k2 ∈ S and Im(k) < 0. If u ∈ H1(Ω̄c) satisfies

∆̃u + k2u = 0 in Ω̄c, then u has the following integral representation: for
x ∈ Ω̄c

0,

u(x) =

∫

Γ0

[
u(y)

∂Φ(r̃)

∂ny

− Φ(r̃)
∂u(y)

∂ny

]
dSy, (4.6)

where ny is the outward unit normal vector on the boundary of Ω0.

Proof. For fixed x ∈ Ω̄c
0, we denote ΩR = (−R,R)2 for R > |x| and let ΓR

be the boundary of ΩR. We can choose an open set D̃ strictly containing
D = ΩR \ Ω̄0. Since u is in H2

loc(Ω̄
c) by an interior regularity (see e.g., [16,

Theorem 8.8]), we observe that u ∈ H2(D̃). By using a cutoff function χ
which is one on D and zero outside D̃, we can find an extension ũ = χu in
H2(R2) of u defined on D. Now, noting that H is the identity matrix and
J = 1 on Ω0, from Theorem 3.2 and integration by parts, it follows that

u(x) = −
∫

R2

((∆̃y + k2I)ũ(y))Φ̃(x, y) dy

= −
∫

Ω0

((∆y + k2I)ũ(y))Φ̃(x, y) dy −
∫

R2\Ω̄R

((∆̃y + k2I)ũ(y))Φ̃(x, y) dy

=

∫

Γ0

[
u(y)

∂Φ(r̃)

∂ny

− Φ(r̃)
∂u(y)

∂ny

]
dSy −

∫

ΓR

[
u(y)nt

yH∇Φ(r̃)− Φ(r̃)nt
yH∇u(y)

]
dSy,
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where ny is the outward unit normal vector on the boundaries of Ω0 and ΩR.
Therefore, it suffices to show that the integral on ΓR vanishes. Since d(yj)

and 1/d(yj) are bounded for j = 1, 2, a Schwarz inequality leads to

I ≡
∣∣∣∣
∫

ΓR

[
u(y)nt

yH∇Φ(r̃)− Φ(r̃)nt
yH∇u(y)

]
dSy

∣∣∣∣

≤ C(‖u‖L2(ΓR)‖∇Φ(r̃)‖L2(ΓR) + ‖Φ(r̃)‖L2(ΓR)‖∇u‖L2(ΓR))

If R > Mf + ‖x‖∞, then ‖x − y‖∞ > Mf for y ∈ ΓR and hence Lemma 3.4
shows that

∫

ΓR

|Φ(r̃)|2 dSy ≤
∫

ΓR

Ce−2αR+2α|x| dSy ≤ Ce2α|x|Re−2αR. (4.7)

By the same argument as above, we have

∫

ΓR

∣∣∣∣
∂Φ(r̃)

∂yj

∣∣∣∣
2

dSy ≤ Ce2α|x|Re−2αR. (4.8)

It is obvious that by a trace theorem

‖u‖L2(ΓR) ≤ C‖u‖H1(Ω̄c). (4.9)

For estimating ∇u in L2(ΓR), let Sγ be a γ-neighborhood of ΓR for a small
γ > 0 independent of R. Since u solves the equation

A(u, φ)− k2(Ju, φ)S2γ = 0 for all φ ∈ H1
0 (S2γ),

by an interior regularity (see e.g., [16, Theorem 8.8]) we have

‖u‖H2(Sγ) ≤ C‖u‖L2(S2γ), (4.10)

where the constant C depends only on k, γ and σ. Then a trace inequality
and (4.10) shows that

‖∇u‖L2(ΓR) ≤ C‖u‖H2(Sγ) ≤ C‖u‖L2(Ω̄c). (4.11)

Combining (4.7), (4.8), (4.9) and (4.11) yields that

I ≤ Ceα|x|
√
Re−αR‖u‖H1(Ω̄c),

which means that I can be arbitrarily small as R approaches infinity. Con-
sequently, it can be concluded that I = 0, which completes the proof.
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Conversely, we have the following lemma.

Lemma 4.4. Assume that k2 ∈ S with Im(k) < 0. If u ∈ H1(Ω0)∩H2
loc(Ω̄

c)

is defined by (4.6) for x ∈ Ω̄c
0, then u satisfies ∆̃u + k2u = 0 in Ω̄c

0 and
u ∈ H1(Ω̄c).

Proof. By Theorem 3.2, we know that Φ(r̃) solves the Cartesian PML Helmholtz
equation with respect to x ∈ Ω̄c

0 for y ∈ Γ0, which immediately implies that

∆̃u+ k2u = 0 in Ω̄c
0. (4.12)

To verify that u is in H1(Ω̄c), we first show that u decays exponentially.
By a Schwarz inequality

|u(x)| =
∣∣∣∣
∫

Γ0

[
u(y)

∂Φ(r̃)

∂ny

− Φ(r̃)
∂u(y)

∂ny

]
dSy

∣∣∣∣

≤ ‖u‖L2(Γ0)‖∇Φ(r̃)‖L2(Γ0) + ‖Φ(r̃)‖L2(Γ0)‖∇u‖L2(Γ0).

If ‖x‖∞ > Mf + a0, then ‖x − y‖∞ > Mf for y ∈ Γ0 and hence Lemma 3.4
leads to ∫

Γ0

|Φ(r̃)|2 dSy ≤
∫

Γ0

Ce−2α|x|+2α|y| dSy ≤ Ce−2α|x|.

By Lemma 3.4 the analogous inequality for ∇Φ(r̃) holds and therefore

|u(x)| ≤ Ce−α|x|(‖u‖L2(Γ0) + ‖∇u‖L2(Γ0)) for ‖x‖∞ > Mf + a0,

which implies that u is in L2(Ω̄c).
Now, to prove that ∇u is in L2(Ω̄c), let ΩR and ΓR be defined as in the

proof of Lemma 4.3. Since u solves (4.12), by the argument similar to (2.4)
and integration by parts we observe that

c0‖∇u‖2L2(ΩR\Ω̄0)
≤ |(H∇u,∇u)ΩR\Ω̄0

|

=

∣∣∣∣
∫

ΓR

(ntH∇u)ū dS −
∫

Γ0

∂u

∂n
ū dS + k2

∫

ΩR\Ω̄0

J |u|2 dx
∣∣∣∣ ,

where n is the outward normal vector on the boundaries of ΩR and Ω0. Since
u ∈ H2

loc(Ω̄
c) and u ∈ L2(Ω̄c), (4.11) holds and hence Schwarz inequalities

yield the boundedness of the right hand side independent of R, which implies
that ∇u is in L2(Ω̄c

0). Finally, from the fact that u ∈ H1(Ω0), it follows that
∇u is in L2(Ω̄c), which completes the proof.
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5. Correspondence between infinite Cartesian PML eigenvalues

and resonances

In this section, we establish a one-to-one correspondence between eigen-
values of the infinite Cartesian PML Helmholtz equation and resonance val-
ues in the sector S defined in (2.7). The analysis proceeds by using the
integral representations studied in the previous section. We use them to
construct an eigenfunction of the Cartesian PML Helmholtz equation from
a resonance function of the Helmholtz equation and vice versa.

We define for z ∈ C

Az(·, ·) ≡ A(·, ·)− zB(·, ·),

where
B(u, v) ≡ (Ju, v)Ω̄c for all u, v ∈ L2(Ω̄c).

We first review important results of a Cartesian PML approximation to
acoustic scattering problems in [28].

Lemma 5.1. (See [28, Lemma 4.6, Lemma 5.2]) Let z be a positive real
number. An inf-sup condition for the Cartesian PML Helmholtz equation on
the unbounded domain holds: for u ∈ H1(Ω̄c),

‖u‖H1(Ω̄c) ≤ C sup
φ∈H1

0
(Ω̄c)

|Az(u, φ)|
‖φ‖H1(Ω̄c)

.

In addition, there exists δ0 > 0 such that for δ > δ0 an inf-sup condition for
the Cartesian PML Helmholtz equation on the truncated domain holds: for
u ∈ H1

0 (Ωδ \ Ω̄)

‖u‖H1(Ωδ\Ω̄) ≤ C sup
φ∈H1

0
(Ωδ\Ω̄)

|Az(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

,

where C is independent of δ.

Remark 5.2. SinceAz(·, ·) is symmetric (but not Hermitian), that isAz(u, φ) =
Az(φ̄, ū), the inf-sup conditions imply inf-sup conditions for the adjoint prob-
lems.
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Lemma 5.1 and Remark 5.2 imply that for z = 1 there exists a solution
operator T : H1

0 (Ω̄
c) → H1

0 (Ω̄
c) defined by Tf = u for f ∈ H1

0 (Ω̄
c), where u

is the unique solution in H1
0 (Ω̄

c) to the problem

A1(u, φ) = B(f, φ) for all φ ∈ H1
0 (Ω̄

c). (5.1)

Now, the main result about the connection between Cartesian PML eigen-
values and resonance values is given in the following theorem.

Theorem 5.3. There is a one-to-one correspondence between eigenvalues λ
of T and resonance values k of (1.1) with k2 ∈ S and Im(k) < 0 by the
formula λ = 1/(k2 − 1).

Proof. First, suppose that k is a resonance value of (1.1) satisfying k2 ∈ S
with Im(k) < 0 and u is a resonance function associated with the resonance
value k. Now, let ũ be defined by

ũ(x) =





u(x) for x ∈ Ω̄0 \ Ω̄,∫

Γ0

[
u(y)

∂Φ(r̃)

∂ny

− Φ(r̃)
∂u(y)

∂ny

]
dSy for x ∈ Ω̄c

0.

We note that the transition around Γ0 is smooth since on Ω1 \ Ω̄ (a neigh-
borhood of Γ0)

ũ(x) =

∫

Γ0

[
u(y)

∂Φ(r̃)

∂ny

− Φ(r̃)
∂u(y)

∂ny

]
dSy

=

∫

Γ0

[
u(y)

∂Φ(|x− y|)
∂ny

− Φ(|x− y|)∂u(y)
∂ny

]
dSy = u(x),

(5.2)

where we used Lemma 4.1 in the last equality. Then ũ is an eigenfunction in
H1

0 (Ω̄
c) of T associated with the eigenvalue λ. Indeed, by Lemma 4.4 ũ is in

H1
0 (Ω̄

c) and satisfies ∆̃ũ+ k2ũ = 0 in Ω̄c. A simple computation shows that

A1(ũ, φ) = (k2 − 1)B(ũ, φ) = (k2 − 1)A1(T ũ, φ) for all φ ∈ H1
0 (Ω̄

c), (5.3)

which implies that ũ is an eigenfunction of T associated with λ = 1/(k2−1).
Conversely, if ũ is an eigenfunction of T associated with an eigenvalue

λ, then the same computation as (5.3) shows that ũ solves the equation

∆̃ũ+ k2ũ = 0 in Ω̄c. It follows that u defined by

u(x) =





ũ(x) for x ∈ Ω̄0 \ Ω̄,∫

Γ0

[
ũ(y)

∂Φ(|x− y|)
∂ny

− Φ(|x− y|)∂ũ(y)
∂ny

]
dSy for x ∈ Ω̄c

0.
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satisfies ∆u+k2u = 0 (the transition on Γ0 is smooth by the argument similar
to that used in (5.2)) and the outgoing radiation condition by Lemma 4.1.
Thus, u is a resonance function associated with the resonance value k =√
1 + 1/λ.

6. Inf-sup conditions

We recall that L̃ is the weakly defined Cartesian PML Laplace operator
defined in H−1(Ω̄c) with domain H1

0 (Ω̄
c). Now, ρ(L̃) denotes the resolvent

set of L̃. In this section, we study inf-sup conditions of Az(·, ·) with z ∈ ρ(L̃)
on three different domains as depicted in Figure 2.

It is clear that (L̃− zI)−1 for z ∈ ρ(L̃) is bounded in H−1(Ω̄c). However,
for the analysis of eigenvalue convergence a stability of solutions in H1

0 (Ω̄
c)

is required. Noting that L̃ is defined in terms of the sesquilinear form Az(·, ·)
as in (2.2), in Lemma 6.1 we first verify an inf-sup condition associated with

Az(·, ·) with z ∈ ρ(L̃) on the infinite domain (see Figure 2(a)), which provides
the stability of solutions in H1

0 (Ω̄
c). Next, an inf-sup condition on the square

domain Ωδ (see Figure 2(b)) for large δ is introduced in Lemma 6.3, which
will be used to establish an inf-sup condition of the truncated PML operator.
Finally, we investigate an inf-sup condition on the truncated domain Ωδ \ Ω̄
for large δ (see Figure 2(c)) in Theorem 6.4. Once the inf-sup condition with

z ∈ ρ(L̃) is established for large δ, it can be shown that z still belongs to
the resolvent set of the truncated PML operator. The inf-sup condition on
the truncated domain is a main ingredient for showing that Cartesian PML
does not produce spurious resonance values, which will be studied in the next
section.

We start with an inf-sup condition for the infinite Cartesian PML Laplace
operator.

Lemma 6.1. For any compact subset K ⊂ ρ(L̃) ∩ S, there exists a positive
constant C independent of z ∈ K such that for all u ∈ H1

0 (Ω̄
c)

‖u‖H1(Ω̄c) ≤ C sup
φ∈H1

0
(Ω̄c)

|Az(u, φ)|
‖φ‖H1(Ω̄c)

.

Proof. Since the resolvent operator (L̃− zI)−1 is a holomorphic function on

ρ(L̃), there exists C > 0 such that

‖(L̃− zI)−1‖H−1(Ω̄c) ≤ C for all z ∈ K. (6.1)
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Ω

Ω̄
c

(a) infinite domain Ω̄c

Ωδ

(b) square domain Ωδ

Ω

Ωδ \ Ω̄

(c) truncated domain Ωδ \ Ω̄

Figure 2: Three domains on which inf-sup conditions of Az(·, ·) for z ∈ ρ(L̃) are verified

For z0 = −e−iθM given above (2.4), we note that Az0(·, ·) is coercive on
H1

0 (Ω̄
c) by (2.4). Let u be in C∞

0 (Ω̄c) and v ∈ H1
0 (Ω̄

c) be the unique solution
to

Az0(v, φ) = Az(u, φ) for all φ ∈ H1
0 (Ω̄

c). (6.2)

Now, if we show that

‖u− v‖H1(Ω̄c) ≤ C‖v‖H1(Ω̄c), (6.3)

then

‖u‖H1(Ω̄c) ≤ ‖v‖H1(Ω̄c) + ‖u− v‖H1(Ω̄c) ≤ C‖v‖H1(Ω̄c)

≤ C sup
φ∈H1

0
(Ω̄c)

|Az0(v, φ)|
‖φ‖H1(Ω̄c)

= C sup
φ∈H1

0
(Ω̄c)

|Az(u, φ)|
‖φ‖H1(Ω̄c)

,

which completes the proof.
To prove (6.3), a simple computation from (6.2) leads to

Az(u− v, φ) = (z − z0)B(v, φ) for all φ ∈ H1
0 (Ω̄

c),

equivalently, (L̃− zI)(u− v) = (z− z0)v. Since z− z0 is bounded for z ∈ K,
it follows from (6.1) that

‖u− v‖H−1(Ω̄c) ≤ C‖v‖H−1(Ω̄c). (6.4)

Again, from (6.2) we see that

Az0(u− v, φ) = (z − z0)B(u, φ) for all φ ∈ H1
0 (Ω̄

c).

Thus, by the coercivity (2.4) and (6.4)

‖u−v‖H1(Ω̄c) ≤ C‖u‖H−1(Ω̄c) ≤ C(‖v‖H−1(Ω̄c)+‖u−v‖H−1(Ω̄c)) ≤ C‖v‖H−1(Ω̄c),

which leads to (6.3) and completes the proof.
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The inf-sup condition above and Remark 5.2 imply that for z ∈ ρ(L̃) and
g ∈ H1/2(Γ), the adjoint exterior problem

Az(θ, φ) = 0 for all θ ∈ H1
0 (Ω̄

c),

φ = g on Γ
(6.5)

is well-posed. Furthermore, solutions to (6.5) decay exponentially in the
sense of the following lemma. Exponential decay of solutions to the exterior
problem is an essential part in proving the inf-sup condition for the trun-
cated Cartesian PML Helmholtz equation. The proof will be provided in the
appendix.

Lemma 6.2. For any compact subset K ⊂ ρ(L̃) ∩ S, there exist positive
constants α, C and M independent of z ∈ K and δ ≥M such that solutions
φ to the problem (6.5) satisfy

‖φ‖H1/2(Γδ)
≤ Ce−αδ‖φ‖H1(Ω̄c) (6.6)

for δ ≥M .

Next, we examine an inf-sup condition for the Cartesian PML Helmholtz
equation on the square domain Ωδ. We define −∆̃ by an operator defined in
L2(R2) with domain H2(R2) and −∆̃δ by a realization of −∆̃ on L2(Ωδ) with

domain H2(Ωδ) ∩H1
0 (Ωδ). The spectrum of −∆̃ is studied in [29, Theorem

4.5] and is the set E defined as in (2.5). Therefore ρ(L̃) ∩ S is contained in

ρ(−∆̃).

Lemma 6.3. For any compact subset K ⊂ ρ(L̃) ∩ S, there exist positive
constants δ0 and C independent of z ∈ K such that

‖u‖H1(Ωδ) ≤ C sup
φ∈H1

0
(Ωδ)

|Az(u, φ)|
‖φ‖H1(Ωδ)

(6.7)

for all δ > δ0 and u ∈ H1
0 (Ωδ). Here C does not depend on δ > δ0.

Proof. In the proof of [29, Theorem 4.8], we observe that for each z ∈ ρ(−∆̃)
there exist positive constants δz and Cz such that

‖(−∆̃δ − zI)−1‖L2(Ωδ) ≤ Cz for δ > δz. (6.8)
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Once we prove that the constants δz and Cz in (6.8) can be taken indepen-
dently of z ∈ K, the same arguments used in the proof of Lemma 6.1 can
be carried out with H1

0 (Ω̄
c) and H−1(Ω̄c) replaced by H2(Ωδ) ∩H1

0 (Ωδ) and
L2(Ωδ), respectively.

We first show that for each z ∈ K there exists an open ball B(z, ε)

centered at z of radius ε such that B(z, ε) ⊂ ρ(−∆̃δ) for all δ > δz. To the
contrary, suppose that there exist sequences δj > δz and λj ∈ C such that λj
is an eigenvalue of −∆̃δj and

δj → ∞ and λj → z as j → ∞.

Then there exists a sequence of uj ∈ H2(Ωδj) ∩H1
0 (Ωδj) satisfying

‖uj‖L2(Ωδj
) = 1 and (−∆̃δj − λjI)uj = 0.

We are led to

‖(−∆̃δj − zI)uj‖L2(Ωδj
) = ‖(λj − z)uj‖L2(Ωδj

) → 0 as j → ∞,

which contradicts to the uniform boundedness (6.8) for δ > δz.
Now, by compactness ofK, there are finitely many open coveringsB(zj, εj)

of K and constants Czj , δzj > 0 for j = 1, . . . , N such that for all δ > δzj

B(zj, εj) ⊂ ρ(−∆̃δ), ‖(−∆̃δ − zjI)
−1‖L2(Ωδ) ≤ Czj

and εj < 1/(2Czj). Let δ0 = max{δzj}Nj=1 and C = max{Czj}Nj=1. For

z ∈ B(zj, εj) and δ > δ0, estimating the Neumann series for (−∆̃δ − zI)−1 =

(−∆̃δ − zjI)
−1(I − (z − zj)(−∆̃δ − zjI)

−1)−1 yields

‖(−∆̃δ − zI)−1‖L2(Ωδ) ≤
∞∑

n=0

|z − zj|n‖(−∆̃δ − zjI)
−1‖n+1

L2(Ωδ)
≤ 2Czj ≤ 2C,

which shows uniform boundedness of resolvent operators independent of z ∈
K and δ > δ0.

An inf-sup condition for the truncated Cartesian PML Helmholtz equa-
tion on Ωδ \ Ω̄ is given in the next theorem.
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Theorem 6.4. For any compact subset K ⊂ ρ(L̃) ∩ S, there exist positive
constants δ̃0 and C independent of z ∈ K such that

‖u‖H1(Ωδ\Ω̄) ≤ C sup
φ∈H1

0
(Ωδ\Ω̄)

|Az(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

, (6.9)

for all δ > δ̃0 and u ∈ H1
0 (Ωδ \ Ω̄). Here C does not depend on δ > δ̃0.

Proof. We will construct a function φ ∈ H1
0 (Ωδ \ Ω̄) which solves the adjoint

problem
Az(θ, φ) = (θ, u)H1(Ωδ\Ω̄) for all θ ∈ H1

0 (Ωδ \ Ω̄) (6.10)

and satisfies
‖φ‖H1(Ωδ\Ω̄) ≤ C‖u‖H1(Ωδ\Ω̄).

Here (·, ·)H1(D) is the H1-inner product on a domain D. Then the theorem
follows since

‖u‖H1(Ωδ\Ω̄) =
Az(u, φ)

‖u‖H1(Ωδ\Ω̄)

≤ C
|Az(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

.

To find such φ, we start with the unique solution φ̃ ∈ H1(Ω̄c) to the
exterior problem

Az(θ, φ̃) = (θ, ũ)H1(Ω̄c) for all θ ∈ H1
0 (Ω̄

c)

by Lemma 6.1 and Remark 5.2, where ũ is the zero extension of u to the
outside of Ωδ. Also, by stability φ̃ satisfies

‖φ̃‖H1(Ω̄c) ≤ C‖u‖H1(Ωδ\Ω̄).

Now, if we can construct another function ψ̃ ∈ H1(Ωδ \ Ω̄) such that

Az(θ, ψ̃) = 0 for all θ ∈ H1
0 (Ωδ \ Ω̄),

ψ̃ = 0 on Γ and ψ̃ = φ̃ on Γδ,

‖ψ̃‖H1(Ωδ\Ω̄) ≤ C‖φ̃‖H1(Ω̄c),

(6.11)

then φ̃− ψ̃ on Ωδ \ Ω̄ is the desired function φ.
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Figure 3: Geometric interpretation of the operator P : H1/2(Γδ) → H1/2(Γδ)

For the construction of ψ̃, we define an operator P : H1/2(Γδ) → H1/2(Γδ)
given by solving the following two problems: for a given χ ∈ H1/2(Γδ) we
define w1 = w1(χ) ∈ H1(Ωδ) solving

Az(θ, w1) = 0 for all θ ∈ H1
0 (Ωδ),

w1 = χ on Γδ,
(6.12)

and w2 = w2(χ) ∈ H1(Ω̄c) solving

Az(θ, w2) = 0 for all θ ∈ H1
0 (Ω̄

c),

w2 = w1 on Γ.
(6.13)

Then P (χ) is defined by the trace of w2 on Γδ (see Figure 3). Here by
Lemma 6.1, Lemma 6.3 and Remark 5.2, w1 and w2 are well-defined and
they satisfy

‖w1‖H1(Ωδ) ≤ C‖χ‖H1/2(Γδ)
,

‖w2‖H1(Ω̄c) ≤ C‖w1‖H1/2(Γ).
(6.14)

Furthermore, for δ large enough, ‖P‖H1/2(Γδ)
< γ < 1 for a positive constant

γ. Indeed, by Lemma 6.2, a trace theorem and (6.14),

‖P (χ)‖H1/2(Γδ)
≤ Ce−αδ‖w2‖H1(Ω̄c) ≤ Ce−αδ‖w1‖H1(Ωδ) ≤ Ce−αδ‖χ‖H1/2(Γδ)

.

We choose δ̃0 large enough so that γ = Ce−αδ < 1 for all δ > δ̃0. Thus,
P =

∑∞
j=0 P

j is well-defined.

Finally, for χ = P(φ̃) where φ̃ is the trace of φ̃ on Γδ by abuse of notation,
we can find ψ̃ = w1(χ)−w2(χ) by solving (6.12) and (6.13). Then ψ̃ satisfies
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all conditions in (6.11) because

ψ̃ = χ− P (χ) = (1− P )
∞∑

j=0

P jφ̃ = φ̃ on Γδ,

‖ψ̃‖H1(Ωδ\Ω̄) ≤ C(‖w1‖H1(Ωδ\Ω̄) + ‖w2‖H1(Ωδ\Ω̄)) ≤ C‖φ̃‖H1(Ωδ\Ω̄)

by (6.14) and a trace theorem. We note here that all constants C involved
in the analysis are independent of z ∈ K and δ > δ̃0.

7. Eigenvalue convergence

In this section, we study convergence of eigenvalues of the truncated
Cartesian PML problem. Opposed to the solution operator T for the infinite
Cartesian PML problem defined in Section 5, we define a solution opera-
tor Tδ : H1

0 (Ω̄
c) → H1

0 (Ωδ \ Ω̄) ⊂ H1
0 (Ω̄

c) for the truncated Cartesian PML
problem: for f ∈ H1

0 (Ω̄
c), Tδ(f) = u ∈ H1

0 (Ωδ \ Ω̄) is the unique solution to

A1(u, φ) = B(f, φ) for all φ ∈ H1
0 (Ωδ \ Ω̄). (7.1)

Clearly, Tδ is well-defined by Lemma 5.1 and Remark 5.2.
Now, the aim of this section is to present the main results:

• the PML technique is free of spurious resonances (in Theorem 7.1) and

• eigenvalues of Tδ converge to those of T (in Theorem 7.3)

as computational domains increase. Our analysis is based on the ideas used
in [27].

The first result is that any compact subset of the resolvent set ρ(T ) of T of
the infinite Cartesian PML problem (which is mapped into a compact subset
in the sector S via the relation studied in Theorem 5.3) is still contained
in the resolvent set ρ(Tδ) of Tδ of the truncated Cartesian PML problem
provided δ is large enough, which leads to that the Cartesian PML technique
is free of spurious eigenvalues for large δ.

Theorem 7.1. Let U be a subset of ρ(T ) which is an image of a compact

subset K ⊂ ρ(L̃)∩ S by the mapping λ = 1/(k2 − 1) defined in Theorem 5.3.
Then there exists δ̃0 > 0 such that U ⊂ ρ(Tδ) for δ > δ̃0.
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Proof. It suffices to show that there exists δ̃0 > 0 such that for δ > δ̃0,
λ ∈ U and w ∈ H1

0 (Ω̄
c), the problem (Tδ − λI)v = w has a unique solution

v ∈ H1
0 (Ω̄

c) satisfying

‖v‖H1(Ω̄c) ≤ C‖w‖H1(Ω̄c). (7.2)

By the fact that Tδ(v) = 0 in Ω̄c
δ and the definition of Tδ, the solution v

needs to be a function satisfying v = − 1
λ
w in Ω̄c

δ and

B(v, φ)− λA1(v, φ) = A1(w, φ) for all φ ∈ H1
0 (Ωδ \ Ω̄),

v = 0 on Γ, v = − 1
λ
w on Γδ.

(7.3)

Noting that Ak2(·, ·) = A1(·, ·) − 1/λB(·, ·) and 1/λ for λ ∈ U is bounded,
Theorem 6.4 shows that there exists δ̃0 > 0 such that for u ∈ H1

0 (Ωδ \ Ω̄)

‖u‖H1(Ωδ\Ω̄) ≤ C sup
φ∈H1

0
(Ωδ\Ω̄)

|Ak2(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

≤ C sup
φ∈H1

0
(Ωδ\Ω̄)

|B(u, φ)− λA1(u, φ)|
‖φ‖H1(Ωδ\Ω̄)

holds uniformly for δ > δ̃0 and λ ∈ U . It then follows that the problem (7.3)
has a unique solution v1 ∈ H1(Ωδ \ Ω̄) such that

‖v1‖H1(Ωδ\Ω̄) ≤ C‖w‖H1(Ωδ\Ω̄).

Now, we define v by v1 in Ωδ \ Ω̄ and by − 1
λ
w in Ω̄c

δ. Since v has the same
trace from the both sides of Γδ, clearly v is in H1

0 (Ω̄
c) and satisfies (7.2),

which completes the proof.

Let λ be an isolated eigenvalue of T , whose image under the map λ 7→√
1 + 1/λ ≡ k(λ) satisfies k2 ∈ ρ(L̃) ∩ S and let Υε denote a circle centered

at λ and of radius ε > 0. Since λ is an isolated eigenvalue of T , we can
choose ε small enough so that Υε is contained in ρ(T ) and excludes all other
eigenvalues except λ inside it. Let V be the generalized eigenspace spanned
by generalized eigenfunctions that are associated with the eigenvalue λ.

By Theorem 7.1, it is clear that Υε is contained in ρ(Tδ) for δ large enough.
Let Vδ be the generalized eigenspace spanned by generalized eigenfunctions
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associated with the eigenvalues of Tδ inside Υε. Then, V and Vδ are identified
as the ranges of the Riesz projections

PΥε(u) ≡
1

2πi

∫

Υε

(T − zI)−1u dz,

P δ
Υε
(u) ≡ 1

2πi

∫

Υε

(Tδ − zI)−1u dz,

respectively.
As Tδ is compact, there are only finitely many eigenvalues λδi for i =

1, . . . , k of Tδ inside Υε. Furthermore, noting the Jordan form of Tδ in the
finite dimensional space Vδ, it has a basis of the form ψi,j , i = 1, . . . , k,
j = 1, . . . ,m(i), which satisfy

ψi,j = (Tδ − λδi )ψi,j+1 and (Tδ − λδi )ψi,1 = 0.

Although a priori a bound on the dimension of Vδ is not known when δ
varies, we can consider subspaces Ṽδ of dimension at most dim(V ) + 1.

Specifically, we can choose a subspace Ṽδ spanned by {ψi,j} for i = 1, . . . , k,
j = 1, . . . , m̃(i) with m̃ =

∑
i m̃(i) ≤ dim(V ) + 1. It is important to note

that the space Ṽδ is invariant under Tδ and P
δ
Υε
.

Exponential decay of generalized eigenfunctions of T and Tδ is provided
in the following lemma and its proof will be given in the appendix.

Lemma 7.2. Let V and Ṽδ be defined as above.

1. There exist positive constants α, C and M such that for ψ ∈ V

|ψ(x)| ≤ Ce−α|x|‖ψ‖H1(Ω̄c) for |x| > M. (7.4)

2. There exists δ0 > 0 such that for δ > δ0 and ψδ ∈ Ṽδ

|ψδ(x)| ≤ Ce−α|x|‖ψδ‖H1(Ωδ\Ω̄) for |x| > M (7.5)

for positive constant α, C and M independent of δ.

3. There exists δ0 > 0 such that for δ > δ0 and for ψ in V or Ṽδ (as a
zero extension to Ω̄c

δ)

‖(T − Tδ)ψ‖H1(Ω̄c) ≤ Ce−αδ‖ψ‖H1(Ω̄c). (7.6)

for positive constant α and C independent of δ.
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Now, we are in the position to give the main theorem for eigenvalue
convergence of the truncated Cartesian PML Helmholtz equation. To this
end, we will show that the dimension of the space V coincides with that of the
space Vδ for δ large enough. It is equivalent to say that the same number of
eigenvalues counting algebraic multiplicities of T and Tδ are inside the small
circle Υε centered at λ of radius ε provided that δ is large enough, i.e., if
dim(V ) = n is the multiplicity of the isolated eigenvalue λ of T , then for any
small ε, there exists δ1 > 0 and the eigenvalues of λδi of Tδ for j = 1, 2, . . . , n
counting their multiplicities such that |λδi − λ| < ε for all δ > δ1.

Theorem 7.3. Let λ,Υε, V and Vδ be defined as above. For any sufficiently
small ε, there exists δ1 > 0 such that

dim(V ) = dim(Vδ)

for δ > δ1. That is, there are the same number of eigenvalues of Tδ counting
algebraic multiplicities inside Υε as the multiplicity of the isolated eigenvalue
λ of T for δ > δ1.

Proof. Let Rz(T ) and Rz(Tδ) be the resolvent operators of T and Tδ for
δ > δ̃0 in Theorem 7.1,

Rz(T ) = (T − zI)−1 and Rz(Tδ) = (Tδ − zI)−1.

Since they are holomorphic on the compact set Υε, we have that for z ∈ Υε,

‖Rz(T )‖H1(Ω̄c) ≤ C and ‖Rz(Tδ)‖H1(Ω̄c) ≤ C (7.7)

with C independent of δ, from which it follows that PΥε and P
δ
Υε

are bounded
operators in H1

0 (Ω̄
c).

We first show that dim(V ) ≤ dim(Vδ). We do this by showing that P δ
Υε

maps V injectively into Vδ. It suffices to show that for ψ ∈ V

‖(I − P δ
Υε
)ψ‖H1(Ω̄c) ≤ c‖ψ‖H1(Ω̄c) (7.8)

for a positive constant c < 1. That is because (7.8) leads to

‖P δ
Υε
ψ‖H1(Ω̄c) ≥ (1− c)‖ψ‖H1(Ω̄c).

Let ψ be in V . Then we see that since PΥεψ = ψ,

(I − P δ
Υε
)ψ = (I − P δ

Υε
)PΥεψ = (PΥε − P δ

Υε
)ψ.
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Therefore, a straightforward computation shows that

‖(I − P δ
Υε
)ψ‖H1(Ω̄c) =

1

2π

∥∥∥∥
∫

Υε

(Rz(T )−Rz(Tδ))ψ dz

∥∥∥∥
H1(Ω̄c)

=
1

2π

∥∥∥∥
∫

Υε

Rz(Tδ)(T − Tδ)Rz(T )ψ dz

∥∥∥∥
H1(Ω̄c)

≤ 1

2π

∫

Υε

‖Rz(Tδ)‖H1(Ω̄c)‖(T − Tδ)Rz(T )ψ‖H1(Ω̄c) dz

(7.9)
Since V is invariant under the action of Rz(T ), by Lemma 7.2, there exists
δ0 such that for δ > δ0

‖(T − Tδ)Rz(T )ψ‖H1(Ω̄c) ≤ Ce−αδ‖ψ‖H1(Ω̄c). (7.10)

It then follows from (7.7), (7.9) and (7.10) that

‖(I − P δ
Υε
)ψ‖H1(Ω̄c) ≤ Ce−αδ‖ψ‖H1(Ω̄c).

Thus, we choose δ1 ≥ δ0 so that Ce−αδ1 is less than one, which yields (7.8).

For the opposite inequality, let ψ be in Ṽδ with Ṽδ defined as above.
Noting the invariance of Ṽδ under Tδ and P δ

Υε
, an argument similar to that

used above shows

‖(I − PΥε)ψ‖H1(Ω̄c) ≤ Ce−αδ‖ψ‖H1(Ω̄c).

Again, choosing δ1 ≥ δ0 so that Ce−αδ1 < 1 then leads to dim(V ) ≥ dim(Ṽδ).

This implies that there is no subspace Ṽδ ⊆ Vδ with dimension greater than
dim(V ) for δ > δ1, i.e., dim(Vδ) = dim(V ).

8. Numerical experiments

We consider a simple photonic resonance problem (1.2) for TE polariza-
tion with G a unit disc. The dielectric constant is defined as

ε =

{
4 on G,

1 otherwise.
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Figure 4: Plot of resonance values computed by Cartesian PML

We find k such that the problem (1.2) has a non-zero solution

u(x) =





∞∑

n=−∞
cnJn(2k|x|)einθx for x ∈ G,

∞∑

n=−∞
dnH

1
n(k|x|)einθx for x ∈ R

2 \ Ḡ,

where Jn is Bessel functions of the first kind of order n. It is easy to see that
by the transmission conditions on the interface ∂G, resonance values k’s are
the solution satisfying

J ′
n(2k)H

1
n(k)− 2Jn(2k)(H

1
n(k))

′ = 0 (8.1)

for n ≥ 0.
The computational result obtained by Cartesian PML with the parame-

ters a0 = 1, a1 = 4, σ0 = 1 on the finite computational domain Ωδ with δ = 5
is given in Figure 4. As analyzed in [29], the eigenvalues forming the line of
slope −1 (determined by σ0 = 1) in the figure are those that correspond to
essential spectrum of the infinite PML Laplace operator, the set E defined
by (2.5). The labeled eigenvalues are those that approximate the exact reso-
nance values in Table 1, which are obtained by solving (8.1) by iteration and
displayed with only the four significant digits. In addition, we see that there
is no spurious resonance observed in the eigenvalue plot of the truncated
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n Label Resonance

0
N01 1.1155− 0.2396i
N02 2.7167− 0.2665i
N03 4.2985− 0.2711i

1
N11 1.8238− 0.2921i
N12 3.4679− 0.2813i

2
N21 2.3981− 0.3781i
N22 4.1637− 0.3100i
N23 1.8658− 0.9125i

3
N31 2.8161− 0.3161i
N32 3.1265− 1.0190i

4
N41 3.3993− 0.1851i
N42 4.2026− 1.1329i

5 N51 4.0104− 0.1096i

Table 1: Exact resonance values with only four significant digits displayed

(a) N01 (b) N02 (c) N03 (d) N11 (e) N12 (f) N21 (g) N22

(h) N23 (i) N31 (j) N32 (k) N41 (l) N42 (m) N51

Figure 5: Real parts of the resonance functions
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δ a0 a1 σ0 h # of DOFs

3 1 2 1 0.01 360,270
4 1 3 1 0.01 641,997
5 1 4 1 0.01 1,002,235
6 1 5 1 0.01 1,442,535

Table 2: PML parameters and the number of DOFs of the discrete problems
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(a) Relative errors in the Cartesian PML
approximations
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(b) Relative errors in Cylindrical PML ap-
proximations

Figure 6: Relative errors of the first ten resonance values of smallest magnitude obtained
by Cartesian PML and Cylindrical PML

problem, which confirms Theorem 7.1. The localized resonance functions are
illustrated in Figure 5.

In order to see convergence of approximate resonance values as δ increases,
we take δ = 3, 4, 5, 6 and choose the PML parameters a0, a1 and σ0 as in
Table 2

for the both x- and y-directions. In this computation, a bilinear finite
element approximation is applied with the mesh size h = 0.01 by using the
finite element library deal.ii [2, 3] and the eigenvalue solver library SLEPc
[22]. Here we also compare the performance of Cartesian PML with that of
cylindrical PML employing the same PML parameters as above. The relative
errors in the first ten approximate resonance values (N01, N02 of multiplic-
ity 1 and N11, N21, N31, N41 of multiplicity 2) are plotted in Figure 6. It
is observed that the cylindrical PML approximations are improved when δ
increases as expected from the theory in [27]. In case of the Cartesian PML
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Figure 7: The structure of dielectric materials

h # of DOFs
PML resonance frequency
approximations k ω = Re(k)/(2π)

1/10 7, 421 1.89769− 0.00137i 0.30203
1/20 29, 241 2.02031− 0.00036i 0.32154
1/40 116, 081 2.01491− 0.00018i 0.32068
1/80 462, 561 2.01358− 0.00014i 0.32047
1/160 1, 846, 721 2.01325− 0.00013i 0.32042

Table 3: PML resonance approximations of the most localized resonance mode

application, it appears that the approximations on an even small domain with
δ = 3 or 4 are accurate up to mesh size errors. In particular, the Cartesian
PML method only with 360,270 DOFs achieves the approximations with the
relative errors less than 0.1 percent while the spherical PML method requires
1,442,535 DOFs to have the similar result. It suggests that overall, Carte-
sian PML has a better performance than cylindrical PML for this particular
example.

The next example is a one-dimensional array of dielectric square materials
of length 0.3a for a waveguide of TM modes. See the structure in Figure 7.
Here a is a lattice constant and is set to be one in this example. A defect
is introduced at the center of the array by increasing a width of a dielectric
square to 0.8a. The dielectric constant ε of the squares is set to be 13
in contrast to a unit for that of the free space. We consider a structure
composed of seven dielectric materials on each side of the defect.

The infinite periodic case with a defect was investigated in [14] by using
the supercell method with the supercell shown in Figure 7. There, the most
localized eigenmode was found to have frequency ω = 0.3130. Now, we use
the PML method to compute the localized resonance mode. Obviously, as
the structure has a large aspect ratio, Cartesian PML has an advantage over
cylindrical PML in terms of computational costs (the approximate frequency
0.321 was obtained by using cylindrical PML with the number of DOFs =
221,201 [17]). The PML parameters for the coordinate shift of the x-direction
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Figure 8: Localized resonance mode

are set as
a1 = 7.15, a2 = 8, δ = 9,

and those of the y-direction are chosen as

a1 = 0.15, a2 = 1, δ = 2

with the same σ0 = 1. The approximate resonance values, whose mode is
highly localized, are reported in Table 3 as a function of the mesh size. Here
we observe the difference between the frequency ω = 0.3130 in [14] and the
approximate frequency ω = 0.3204 by the Cartesian PML. This difference
may be explained in terms of the boundary conditions of two methods. In
the PML application, the size of the dielectric structure of the model prob-
lem is finite and the system is embedded in the unbounded free space. Thus,
the resonance function satisfies the radiation condition at infinity, that is
replaced with a perfectly matched layer in the numerical scheme. In con-
trast, the assumption of the supercell method is that the dielectric structure
is infinitely periodic. In the application of the practical supercell method, it
is expected that if the size of supercells is large enough, then interaction be-
tween neighboring supercells is negligible and hence approximate eigenvalues
on a supercell with a periodic boundary condition converge to those of the
ideal defected infinitely periodic photonic crystals.
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Finally, the localized mode associated with the resonance is shown in
Figure 8 and is qualitatively similar to the localized eigenmode of the defected
infinite periodic structure in [14].
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10. Appendix

This appendix is devoted to showing exponential decay of generalized
eigenfunctions to the Cartesian PML Helmholtz equation and providing proofs
of lemmas given in earlier sections without proof.

First, we shall derive an equation for functions in Ṽδ defined in Section 7.
Let λi for i = 1, . . . , m̃ be eigenvalues of Tδ inside Υε after renumbering the
eigenvalues λδi . It is clear that for any nonzero ψδ ∈ Ṽδ,

k∏

i=1

(Tδ − λδi I)
m̃(i)ψδ =

m̃∏

i=1

(Tδ − λiI)ψ
δ = 0,

and hence there is a positive integer n ≤ m̃ such that

n−1∏

i=1

(Tδ − λiI)ψ
δ 6= 0 and

n∏

i=1

(Tδ − λiI)ψ
δ = 0.

Starting with ψδ
n = ψδ, we define ψδ

j recursively by ψδ
j ≡ (Tδ−λn−jI)ψ

δ
j+1 for

j = 0, · · · , n − 1. Here we note that ψδ
1 is an eigenfunction of Tδ associated

with the eigenvalue λn and hence observe that ψδ
0 ≡ 0. By using the definition

of Tδ, we have

∆̃ψδ
j+1 + (k(λn−j))

2ψδ
j+1 = − 1

λn−j
(∆̃ψδ

j + ψδ
j ) in Ωδ \ Ω̄, (10.1)

where (k(λn−j))
2 = 1 + 1/λn−j. In particular, ψδ

1 solves

∆̃ψδ
1 + (k(λn))

2ψδ
1 = 0 in Ωδ \ Ω̄ (10.2)

and by an induction argument applied to (10.1), ψδ = ψδ
n satisfies

∆̃ψδ + (k(λ1))
2 ψδ =

n−1∑

j=1

(−1)j+1

Πj+1
l=1λl

ψδ
n−j in Ωδ \ Ω̄. (10.3)
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For V , the situation is much simpler since there is only one eigenvalue
λ inside Υε. In this case, let m be the algebraic multiplicity of λ. Since
(T − λI)mψ = 0 for any non-zero ψ ∈ V , there exists a positive integer
n ≤ m such that

(T − λI)n−1ψ 6= 0 and (T − λI)nψ = 0.

Setting ψn = ψ and ψj = (T − λI)ψj+1 for j = 0, · · · , n − 1, the same
computation as above shows that ψ1 solves

∆̃ψ1 + (k(λ))2ψ1 = 0 in Ω̄c (10.4)

and ψ = ψn satisfies

∆̃ψ + (k(λ))2 ψ =
n−1∑

j=1

(−1)j+1

λj+1
ψn−j in Ω̄c. (10.5)

Exponential decay of generalized eigenfunctions of T and Tδ which satisfy
the equations (10.3) or (10.5), respectively, will be proved inductively based
on the following two lemmas.

Lemma 10.1. Assume that k2 ∈ S and Im(k) < 0. Suppose that u ∈ H1
0 (Ω̄

c)
satisfies

∆̃u+ k2u = f in Ω̄c (10.6)

for f ∈ H1
0 (Ω̄

c). If f decays exponentially, i.e., there exist positive constants
β and M such that |f(x)| ≤ Ce−β|x|‖f‖H1(Ω̄c) for |x| > M , then there exist
positive constants α1, C1 and M1 > M such that

|u(x)| ≤ C1e
−α1|x| (‖u‖H1(Ω̄c) + ‖f‖H1(Ω̄c)

)
(10.7)

and
‖u‖H1/2(Γδ)

≤ C1e
−α1δ

(
‖u‖H1(Ω̄c) + ‖f‖H1(Ω̄c)

)
(10.8)

for |x|, δ > M1. Here α1, C1 M1 can be chosen independently of u, f and δ.

Lemma 10.2. Assume that k2 ∈ S and Im(k) < 0. There exists a positive
constant δ̃0 for which the following holds. For δ > δ̃0, suppose that uδ ∈
H1

0 (Ωδ \ Ω̄) satisfies
∆̃uδ + k2uδ = f in Ωδ \ Ω̄
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for f ∈ H1
0 (Ωδ \ Ω̄). If f decays exponentially, i.e., there exist positive con-

stants β, C and M such that |f(x)| ≤ Ce−β|x|‖f‖H1(Ωδ\Ω̄) for |x| > M , then
there exist positive constants α1, C1 and M1 > M such that

|uδ(x)| ≤ C1e
−α1|x| (‖uδ‖H1(Ωδ\Ω̄) + ‖f‖H1(Ωδ\Ω̄)

)
(10.9)

for |x| > M1. Here α1, C1 and M1 can be chosen independently of uδ, f and
δ.

Proof of Lemma 10.1. Let Mf be the constant in Lemma 3.4 and let M̃1 =
M +

√
2Mf . For |x| > M̃1, BM and BR denote the open balls centered

at the origin and of radius M and 2|x| with the boundaries ΓM and ΓR,
respectively. By an argument similar to that used in Theorem 4.3, we have
that for |x| > M̃1,

u(x) =

∫

ΓM∪ΓR

[
Φ(r̃)nt

yH∇u(y)−u(y)nt
yH∇Φ(r̃)

]
dSy−

∫

D

f(y)J(y)Φ(r̃) dy,

(10.10)
where ny is the outward unit normal vector on the boundaries of D = BR \
B̄M .

For the integral on the inner boundary ΓM , we note that ‖x− y‖∞ > Mf

for y ∈ ΓM and |x| > M̃1. By Lemma 3.4 we are led to

∫

ΓM

|Φ(r̃)|2 dSy ≤
∫

ΓM

Ce−2α|x−y| dSy ≤
∫

ΓM

Ce−2α|x|+2α|y| dSy ≤ Ce−2α|x|.

The similar inequality for ∇Φ(r̃) holds and hence by a Schwarz inequality
and an interior regularity similar to (4.11), we obtain that for |x| > M̃1

∣∣∣∣
∫

ΓM

[
Φ(r̃)nt

yH∇u(y)− u(y)nt
yH∇Φ(r̃)

]
dSy

∣∣∣∣
2

≤ Ce−2α|x|
(
‖∇u‖2L2(ΓM ) + ‖u‖2L2(ΓM )

)
≤ Ce−2α|x|(‖u‖2H1(Ω̄c) + ‖f‖2H1(Ω̄c)).

For the integral on the outer boundary ΓR, we have that ‖x− y‖∞ > Mf

for y ∈ ΓR and |x| > M̃1. It follows from Lemma 3.4 that

∫

ΓR

|Φ(r̃)|2 dSy ≤
∫

ΓR

Ce−2α|x−y| dSy ≤
∫

ΓR

Ce−2α|x| dSy ≤ C|x|e−2α|x|.
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Therefore, the same technique used as above shows the analogous inequality
bounding the integral on ΓR and hence we have

∣∣∣∣
∫

ΓM∪ΓR

[
Φ(r̃)nt

yH∇u(y)− u(y)nt
yH∇Φ(r̃)

]
dSy

∣∣∣∣
2

≤ C(|x|+ 1)e−2α|x|(‖u‖2H1(Ω̄c) + ‖f‖2H1(Ω̄c)).

(10.11)
For the volume integral in (10.10), we separate the domain D into two

subregions according to the distance from x with respect to ‖ · ‖∞. Let
Dx = {y ∈ R

2 : ‖x− y‖∞ ≤Mf}. For y ∈ Dx, it is obvious that

|y| ≥ ‖y‖∞ ≥ ‖x‖∞ −Mf ≥ 1√
2
|x| −Mf .

Using boundedness of J and the above inequality,
∣∣∣∣
∫

D∩Dx

f(y)J(y)Φ(r̃) dy

∣∣∣∣ ≤ C‖f‖H1(Ω̄c)

∫

D∩Dx

e−β|y||Φ(r̃)| dy

≤ C‖f‖H1(Ω̄c)

∫

D∩Dx

e
− β

√

2
|x||Φ(r̃)| dy ≤ Ce

− β
√

2
|x|‖f‖H1(Ω̄c).

(10.12)
Here in the last inequality, we used the fact that Φ(|x− y|) has an integrable
singularity at y = x and C1|x− y| ≤ |r̃| in Lemma 3.1 and so the integral of
|Φ(r̃)| on D ∩Dx depends only on Mf .

For the integral on the other subregion, let α̃ = min{α, 1√
2
β}. By

Lemma 3.4 we are led to
∣∣∣∣
∫

D\Dx

f(y)J(y)Φ(r̃) dy

∣∣∣∣ ≤ C‖f‖H1(Ω̄c)

∫

D\Dx

e−β|y|e−α|x−y| dy

≤ C‖f‖H1(Ω̄c)

∫

D\Dx

e−α̃|x| dy ≤ C|x|2e−α̃|x|‖f‖H1(Ω̄c).

(10.13)
Therefore, combining (10.12) and (10.13), the volume integral satisfies

∣∣∣∣
∫

D

f(y)Φ(x, y) dy

∣∣∣∣ ≤ C(|x|2 + 1)e−α̃|x|‖f‖H1(Ω̄c) (10.14)

for |x| > M̃1.
The polynomial growth in (10.11) and (10.14) can be absorbed in generic

constants C by taking a slightly smaller α1 < α̃ and a larger M1 > M̃1.

38



Finally, (10.11) and (10.14) imply that

|u(x)| ≤ Ce−α1|x|(‖u‖H1(Ω̄c) + ‖f‖H1(Ω̄c))

for |x| > M1.
For the second inequality (10.8), let Sγ be a γ-neighborhood of Γδ with γ

independent of δ. Using a trace theorem and an interior regularity estimate,
we see that

‖u‖H1/2(Γδ)
≤ C‖u‖H2(Sγ) ≤ C(‖u‖L2(S2γ) + ‖f‖L2(S2γ)) (10.15)

Finally, it follows from (10.15) that integrating (10.7) and the similar in-
equality for f on S2γ gives

‖u‖H1/2(Γδ)
≤ Ce−α1δ

(
‖u‖H1(Ω̄c) + ‖f‖H1(Ω̄c)

)
. (10.16)

Remark 10.3. The above lemma deals with exponential decay of solutions
to the Cartesian PML Helmholtz equation with wavenumber located only in
the region − arg(d0) < arg(k) < 0, where resonance values appear. However,
it holds for k with | arg(k)| < arg(d0) as well. Indeed, since Im(kr̃) > 0
for | arg(k)| < arg(d0) provided |x − y| is large enough, the fundamental

solution Φ̃ of the Cartesian PML Helmholtz equation decays exponentially
as in Lemma 3.4 and the above analysis can be carried over to this case.

Proof of Lemma 10.2. To prove exponential decay of uδ, the function uδ is
decomposed into uδ = u + w by solving two problems: u ∈ H1(Ω̄c) is a
solution to the exterior problem

∆̃u+ k2u = f̃ in Ω̄c,

u = uδ on Γ,
(10.17)

where f̃ is the zero extension of f to Ω̄c
δ, and w ∈ H1(Ωδ \ Ω̄) is a solution

to the truncated problem

∆̃w + k2w = 0 in Ωδ \ Ω̄,
w = 0 on Γ,

w = −u on Γδ.

(10.18)
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Here we note that the exterior problem (10.17) and the truncated problem
(10.18) for δ > δ̃0 both are well-posed by Lemma 6.1 and Theorem 6.4,
respectively.

First, exponential decay of the solution u follows from Lemma 10.1 and
hence by using the stability of the problem (10.17) and a trace theorem we
infer that

|u(x)| ≤ C1e
−α1|x| (‖uδ‖H1(Ωδ\Ω̄) + ‖f‖H1(Ωδ\Ω̄)

)
(10.19)

for all |x| > M1 with the constants α1, C1 and M1 given in Lemma 10.1.
Second, in order to show exponential decay of w, we introduce a slightly

larger smooth domain D1 independent of δ such that Ωδ \ D̄1. We shall show
that

‖w‖H2(Ωδ\D̄1) ≤ Cδ‖u‖H2(Sγ∩Ωδ) (10.20)

for some Cδ which may grow only polynomially as a function of δ. Here
Sγ is a γ-neighborhood of Γδ for γ > 0 independent of δ. Once we have
the estimation (10.20), by a Sobolev embedding theorem and an interior
regularity (see e.g., [16, Theorem 8.8]) we obtain that for x ∈ Ωδ \ D̄1

|w(x)| ≤ C‖w‖H2(Ωδ\D̄1) ≤ Cδ‖u‖H2(Sγ∩Ωδ) ≤ Cδ(‖u‖L2(S2γ) + ‖f̃‖L2(S2γ)).

Then, integrating the exponentially decaying function u and f̃ on S2γ as in
(10.16) and absorbing the polynomial growth in Cδ by taking a smaller α1,
we are led to

|w(x)| ≤ C1e
−α1|x|(‖uδ‖H1(Ωδ\Ω̄) + ‖f‖L2(Ωδ\Ω̄)).

for all |x| > M1.
To verify (10.20), let χ1 be a cutoff function defined on Ωδ \ D̄1 which is

one on a neighborhood of Γδ and zero outside of Sγ∩(Ωδ\D̄1). We decompose
w = w1 + w2, where w1 = −χ1u and w2 is a unique solution to

∆̃w2 + k2w2 = g in Ωδ \ D̄1,

w2 = 0 on ∂D1 ∪ Γδ,
(10.21)

where g = −(∆̃w1 + k2w1) and we note that

‖w2‖H1(Ωδ\D̄1) ≤ C‖g‖L2(Ωδ\D̄1) and ‖g‖L2(Ωδ\D̄1) ≤ C‖u‖H2(Sγ∩Ωδ). (10.22)

Therefore, we only have to show

‖wj‖H2(Ωδ\D̄1) ≤ Cδ‖u‖H2(Sγ∩Ωδ) for j = 1, 2 (10.23)
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with Cδ growing only polynomially as a function of δ.
For j = 1, obviously we have ‖w1‖H2(Ωδ\D̄1) ≤ C‖u‖H2(Sγ∩Ωδ). For j = 2,

let D2 be a smooth domain independent of δ between D1 and Ωδ such that
D̄1 ⊂ D2 and D̄2 ⊂ Ωδ. We introduce another cutoff function χ2 with domain
Ωδ\D̄1, which is one on Ωδ\D̄2 and vanishes near ∂D1. Then χ2w2 (considered
as an extension by zero in D1) and (1 − χ2)w2 satisfy the equations similar
to (10.21) on domains Ωδ and D2 \D̄1, respectively, with the right hand sides
which involve g and at most first derivative of w2. Therefore, by a regularity
on the smooth domain D2 \ D̄1,

‖(1−χ2)w2‖H2(Ωδ\D̄1) = ‖(1−χ2)w2‖H2(D2\D̄1) ≤ C(‖g‖L2(Ωδ\D̄1)+‖w2‖H1(Ωδ\D̄1)).
(10.24)

Finally, using dilation of a fixed square domain and a regularity of solutions
on the reference domain, we have

‖χ2w2‖H2(Ωδ\D̄1) = ‖χ2w2‖H2(Ωδ) ≤ Cδ(‖g‖L2(Ωδ\D̄1) + ‖w2‖H1(Ωδ\D̄1)).
(10.25)

By combining (10.24), (10.25) together with (10.22), the inequality (10.23)
for j = 2 immediately follows.

Proof of Lemma 6.2. Since the symmetry of the sesquilinear form Az(·, ·),
the adjoint problem is equivalent to the problem to find φ such that

Az̄(φ, θ) = 0 for all θ ∈ H1
0 (Ω̄

c),

φ = ḡ on Γ.

Then since 0 < arg(
√
z̄) < arg(d0), Lemma 10.1 and Remark 10.3 show

exponential decay of the solution to the above problem.

Proof of Lemma 7.2. For the first exponential decay estimation (7.4), we be-
gin with noting that the equations (10.4) and (10.5) hold for ψ in V . Applying
Lemma (10.1) to (10.4) shows the exponential decay of ψ1, there exist α1 and
M1 > 0 such that

|ψ1(x)| ≤ Ce−α1x‖ψ1‖H1(Ω̄c)

for |x| > M1. The repeated use of Lemma 10.1 for the recursively defined ψj

for j = 0, . . . , n shows that there exist α, C andM such that ψ = ψn satisfies

|ψn(x)| ≤ Ce−α|x|
n∑

j=1

‖ψj‖H1(Ω̄c)
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for all |x| > M , where α, C and M may depend on λ and n but not on δ.
The continuity of T − λI in H1(Ω̄c) and the recursive relation for ψj imply
that there exists a positive constant C such that

‖ψj‖H1(Ω̄c) ≤ C‖ψn‖H1(Ω̄c) for j = 1, . . . , n,

from which it follows that

|ψn(x)| ≤ Ce−α|x|‖ψn‖H1(Ω̄c).

The second inequality (7.5) can be proved in the same way as above with

Lemma 10.2 applied to the equations (10.2) and (10.3) for functions in Ṽδ.
For the last estimation (7.6), it suffices to prove (7.6) for ψ satisfying

(7.4) since functions in Ṽδ also fulfill the decaying condition (7.4). We prove
it by estimating

‖(T − Tδ)ψ‖H1(Ωδ\Ω̄) ≤ C1e
−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)), (10.26)

‖(T − Tδ)ψ‖H1(Ω̄c
δ)
≤ C1e

−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)). (10.27)

for some constants α1 and C1, which leads to (7.6). We note that Tψ solves
the equation

∆̃Tψ + Tψ = −ψ in Ω̄c (10.28)

by the definition of T and hence it follows from Lemma 10.1 and Remark 10.3
that Tψ satisfies

|Tψ(x)| ≤ C1e
−α1|x|(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)) for |x| > M1 (10.29)

‖Tψ‖H1/2(Γδ)
≤ C1e

−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)) for δ > M1. (10.30)

For (10.26), we observe that (T − Tδ)ψ on Ωδ \ Ω̄ is a unique solution to
the truncated problem

A1((T − Tδ)ψ, θ) = 0 for all θ ∈ H1
0 (Ωδ \ Ω̄),

(T − Tδ)ψ = Tψ on Γδ and (T − Tδ)ψ = 0 on Γ

for δ > δ0 (given in Lemma 5.1 and δ0 > M1). By the stability of the above
problem and (10.30), we have (10.26),

‖(T − Tδ)ψ‖H1(Ωδ\Ω̄) ≤ C‖Tψ‖H1/2(Γδ)
≤ C1e

−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)).
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For (10.27), we shall estimate Tψ in Ω̄c
δ since (T − Tδ)ψ = Tψ on Ω̄c

δ.
Integrating (10.29) on Ω̄c

δ implies that

‖Tψ‖L2(Ω̄c
δ)
≤ Cδe

−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)), (10.31)

where Cδ grows polynomially. For H1-seminorm of Tψ on Ω̄c
δ, applying the

L2 inner product against J̄Tψ to (10.28) and integrating it by parts shows
that

(H∇Tψ,∇Tψ)Ω̄c
δ
=

∫

Γδ

(ntH∇Tψ)(Tψ) dS + (JTψ, Tψ)Ω̄c
δ
+ (Jψ, Tψ)Ω̄c

δ
.

(10.32)
In the first term of the right hand side, the same argument as that used in
(10.15) and (10.16) (with u and f replaced by Tψ and ψ, respectively) yields

‖Tψ‖L2(Γδ), ‖∇Tψ‖L2(Γδ) ≤ Ce−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c))

and hence Schwarz inequality yields

∣∣∣∣
∫

Γδ

ntH∇TψTψ dS

∣∣∣∣ ≤ Ce−2α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c))
2. (10.33)

In the last two terms, by Schwarz inequalities and integrating (7.4) and
(10.29) on Ω̄c

δ, we are led to

|(JTψ, Tψ)Ω̄c
δ
| ≤ C‖Tψ‖2L2(Ω̄c

δ)
≤ Cδe

−2α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c))
2

|(Jψ, Tψ)Ω̄c
δ
| ≤ C‖ψ‖L2(Ω̄c

δ)
‖Tψ‖L2(Ω̄c

δ)
≤ Cδe

−2α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c))
2.

(10.34)
By applying the coercivity (2.4) to (10.32), it follows from (10.33) and (10.34)
that

‖∇Tψ‖L2(Ω̄c
δ)
≤ Cδe

−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c)). (10.35)

Finally, the H-norm estimate

‖Tψ‖H1(Ω̄c
δ)
≤ Ce−α1δ(‖Tψ‖H1(Ω̄c) + ‖ψ‖H1(Ω̄c))

is obtained by combining (10.31) and (10.35). Here we choose a smaller α1

to remove the polynomial dependence of δ.
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