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Abstract

This paper deals with an application of a complete radiation boundary condi-
tion (CRBC) for the Helmholtz equation in locally perturbed waveguides. The
CRBC, one of efficient high-order absorbing boundary conditions, has been an-
alyzed in straight waveguides in [17]. In this paper, we apply CRBC to the
Helmholtz equation posed in locally perturbed waveguides and establish the
well-posedness of the problem and convergence of CRBC approximate solu-
tions. The new CRBC proposed in this paper improves the one studied in [17]
in two aspects. The first one is that the new CRBC involves more damping
parameters with the same computational cost as that of CRBC in [17], which
results in 50% smaller reflection errors. The second one is that the new CRBC
takes a Neumann terminal condition of three term recurrence relations of aux-
iliary variables instead of a Dirichlet terminal condition used in [17] so that it
can treat cutoff modes effectively. Finally, we present numerical experiments
illustrating the convergence theory.

Keywords: Complete radiation boundary condition, absorbing boundary
condition, Helmholtz equation, waveguide

1. Introduction

Waveguides are important structures used for transferring acoustic/electromagnetic
energy from one point to another. In many applications, waveguides include
bounded inhomogeneities such as guide vanes, fans, some obstacles or local per-
turbation. In this paper, we analyze an application of a high-order absorbing
boundary condition, so-called complete radiation boundary condition, to locally
perturbed waveguide structures including any bounded inhomogeneity.

For the numerical study of wave propagation in waveguides, it is essential
to truncate the infinite waveguide into a finite domain of interest and impose
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an accurate absorbing boundary condition on artificial boundaries. Absorbing
boundary conditions, that can reduce reflected waves as small as we wish, have
been studied in a great variety of different approaches based on such as perfectly
matched layers (PMLs) [4, 24], truncated Dirichlet-to-Neumann (DtN) opera-
tors [6, 16, 18, 28] and rational approximations to the DtN operator [10, 12, 21]
among others. Also, complete radiation boundary conditions were employed
to study wave propagation in straight waveguides in [17, 23]. The CRBC is
developed based on Higdon’s high-order absorbing boundary condition [19, 20]
but it is modified to be more suitable for numerical applications by introducing
auxiliary variables satisfying certain recursive relations with some parameters,
which can be tuned for minimizing reflections from absorbing boundaries.

In this paper, we extend applications of CRBC to general waveguides consist-
ing of straight semi-infinite waveguides outside of a compact set. They include
locally perturbed straight waveguides, waveguide bends, coupled waveguides
and waveguides with heterogeneous inclusions. Compared with CRBC studied
in [17], the new CRBC in this paper is improved in two aspects. The first im-
provement is that the new CRBC can allow two-sided parameter selection and
hence it employs more parameters in recurrence formulas of auxiliary variables
of CRBC. Consequently, it turns out that reflection errors can be made 50%
smaller without increase of computational costs than those of CRBC in [17].
The second one is that the recursive formulas of auxiliary variables of CRBC
are terminated with a Neumann condition instead of a Dirichlet condition used
in [17]. It is found that when the Dirichlet terminal condition is used, the re-
flection generated by cutoff modes decreases slowly with respect to the number
of parameters of CRBC. In contrast, as will be seen later, the CRBC with the
Neumann terminal condition not only provides efficient treatment for all prop-
agating modes and all important evanescent modes but also yields the exact
radiation condition for cutoff modes.

In order to study CRBC applied to the Helmholtz equation for the radiation
condition theoretically and numerically, we will give three different but equiv-
alent interpretations for CRBC. The first one is the main ingredient for the
theoretical part of the paper. The CRBC can be interpreted as approximate
DtN operators between Sobolev spaces and this form of CRBC will be used
for the well-posedness analysis of the problem with CRBC and convergence of
approximate solutions. The second representation of CRBC is thought of as
rational approximations to the square root function involved in the DtN oper-
ator. An optimal choice of parameters for minimizing errors in some spectral
ranges is investigated from the view point of rational approximations. We note
that there has been intensive research for finding rational approximations to
the square root function involved in the DtN operator in terms of finite differ-
ence grid points, see e.g., [11, 12, 21]. These grid points satisfying three term
recursions can be chosen in such a way that the resulting rational functions
associated with the grid points minimize errors from the square root function.
The third one is a practical reformulation of CRBC as studied in [17]. Due to
this formulation, we can have auxiliary functions defined only on the absorbing
boundaries satisfying three term recursive relations. We use this form of CRBC
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Figure 1: Domain of the model problem in R2

for numerical experiments.
The outline of the paper is as follows. In Section 2, we introduce CRBC with

two-sided parameters and a Neumann terminal condition. Here we interpret
CRBC in two different forms including an approximate DtN operator and a
rational approximation of the square root function. In Section 3, we discuss
selection of CRBC parameters based on the theory developed in Section 2. In
Section 4, we study the well-posedness of the problem supplemented with CRBC
on an artificial boundary and show the exponential convergence of approximate
solutions satisfying CRBC with increasing order of CRBC. Section 5 is devoted
to introducing a practical form of CRBC suitable for discretization methods.
The equivalence between different forms of CRBC will be established as well.
In Section 6, numerical experiments validating the convergence theory will be
presented.

2. Complete radiation boundary conditions for approximate radiation
conditions

Let Ω∞ be a domain with Lipschitz boundary in Rd with d = 2, 3 obtained
by merging semi-infinite waveguides such that it consists of straight semi-infinite
waveguides outside of a compact set. It can be a locally perturbed waveguide,
waveguide bends or waveguides with junctions of arbitrary shape. For simple
presentation we assume that there exists only one semi-infinite straight waveg-
uide in Ω∞ with boundary ∂Ω∞ as depicted in Figure 1, however the analysis
for this simple case can be extended to the more general cases mentioned above
without essential changes. Here we also assume that the axis of the waveguide
Ω∞ is parallel to the x-axis for (x, y) ∈ R × Rd−1 and there exists a positive
constant δ such that Ω∞ ∩ {(x, y) ∈ Rd : x > −δ} is a straight semi-infinite
waveguide, that is, (−δ,∞)×Θ with Θ a bounded domain in Rd−1 with Lips-
chitz boundary. The model problem to be considered is to find a solution uex

satisfying
−∆uex − k2uex = f in Ω∞,

∂uex

∂ν
= 0 on ∂Ω∞

(2.1)
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and a radiation condition at infinity, where f is a wave source compactly sup-
ported in Ω∞ ∩ {(x, y) ∈ Rd : x < −δ}, k is a positive wavenumber and
ν represents the outward unit normal vector on ∂Ω∞. It is also possible to
consider the problem with the Dirichlet condition on the boundary instead of
the Neumann condition, however we focus only on this model problem as the
analysis can be carried out without any significant change.

It is well-known that there may exist eigenvalues of the model problem.
Analyses on discrete spectrum of waveguides can be found, for instance, for the
case of waveguides with obstacles in [9, 13, 22, 26], curved waveguides in [25],
locally perturbed straight waveguides in [7, 15] and coupling several waveguides
with a window in [14] among others. Therefore, we need to assume that k2 is
not an eigenvalue of the model problem for the well-posedness in the infinite
domain Ω∞.

In order to introduce CRBC to the model problem, we define Ω = Ω∞ ∩
{(x, y) ∈ Rd : x < 0} for the domain of interest and denote a part of the
boundary of Ω at x = 0 by ΓE for the absorbing boundary and its comple-
ment from ∂Ω by Γc, so that ∂Ω = Γ̄E ∪ Γ̄c and ΓE ∩ Γc = ∅ (see Figure 1).
Let {Yn}∞n=0 be a complete set of orthonormal eigenfunctions of the negative
transversal Laplace operator −∆y associated with eigenvalues λ2

n on Θ,

∆yYn + λ2
nYn = 0 in Θ,

∂Yn
∂ν

= 0 on ∂Θ.

Here λn are ordered increasingly, 0 ≤ λ0 ≤ λ1 ≤ . . . . Since eigenvalues λ2
n are

asymptotically
λ2
n = O(n2/(d−1)) (2.2)

for large n, [see, e.g., 8, Ch. VI, Thm. 20-21], there exists an integer N such
that λ2

n ≤ k2 for n ≤ N and λ2
n > k2 for n > N . In certain situations, there may

exist a positive integer n = N such that λ2
N = k2, which corresponds to cutoff

modes. In order to understand the behavior of CRBC for all modes including
propagating, evanescent and cutoff modes, we assume that such N exists. The
complete orthonormal basis {Yn}∞n=0 allows us to express general solutions to
the Helmholtz equation for x > −δ in Fourier series,

u(x, y) = (AN +BNx)YN (y) +
∑
n 6=N

(Ane
iµnx +Bne

−iµnx)Yn(y) (2.3)

with µ2
n = k2 − λ2

n. Here µn are axial frequencies defined as

µn =


√
k2 − λ2

n if 0 ≤ n < N,
0 if n = N,

i
√
λ2
n − k2 := iµ̃n with µ̃n > 0 if n > N.

Taking the time-harmonic dependence e−iωt into account with angular frequency
ω = ck and sound speed c, the radiating solution (bounded and right-going to
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infinity) is one that takes the form

u(x, y) =

∞∑
n=0

Ane
iµnxYn(y).

We note that components for 0 ≤ n < N represent propagating modes and those
for n > N do evanescent modes. Thus the radiating solution can be interpreted
as the solution satisfying

∂u

∂ν
= T (u) on ΓE ,

where T : H1/2(Θ) → H−1/2(Θ) is the Dirichlet-to-Neumann (DtN) operator
defined by

T (φ) =

∞∑
n=0

iµnφnYn

for φ =
∑∞
n=0 φnYn in H1/2(Θ). Here Hs(ΓE) for −1 ≤ s ≤ 1 is a Sobolev

space equipped with a norm

‖φ‖2Hs(Θ) =

∞∑
n=0

(1 + λ2
n)s|φn|2. (2.4)

Then the radiating solution uex ∈ H1(Ω) is a solution satisfying the problem

−∆uex − k2uex = f in Ω,

∂uex

∂ν
= 0 on Γc,

∂uex

∂ν
− T (uex) = 0 on ΓE .

(2.5)

Here we consider the problem with wave source f ∈ H−1(Ω) supported for
x < −δ, where H−1(Ω) denotes the dual space of the Sobolev space H1(Ω).

Now, we introduce CRBC that can approximate the DtN boundary con-
dition. For positive integers np and ne, CRBC of order (np, ne) on ΓE can
be defined in terms of auxiliary variables ϕj satisfying the Helmholtz equation
on a neighborhood of ΓE with the homogeneous Neumann condition on the
waveguide boundary and the recursive relations on a neighborhood of ΓE ,

ϕ0 = u (2.6)

(
∂

∂x
+ aj)ϕj = (− ∂

∂x
+ ãj)ϕj+1 (2.7)

for 0 ≤ j ≤ P := np + ne − 1 together with the terminal condition

∂

∂x
ϕP+1 = 0 on ΓE , (2.8)
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where aj and ãj are damping parameters given by

aj =

{
−ikcj for 0 ≤ j < np,
σj−np for np ≤ j < np + ne,

ãj =

{
−ikc̃j for 0 ≤ j < np,
σ̃j−np

for np ≤ j < np + ne

(2.9)

with the conditions

µmin/k ≤ c0 < c̃0 < . . . < cnp−1 < c̃np−1 ≤ 1,

µ̃min ≤ σ0 < σ̃0 < . . . < σne−1 < σ̃ne−1 ≤ µ̃max.
(2.10)

Here µmin and µ̃min are the smallest axial frequency of propagating modes
and the smallest decay rate of evanescent modes, respectively, that is, if a cutoff
mode exists and the corresponding eigenvalue λ2

N is of multiplicity 1, then

µmin = µN−1 and µ̃min = µ̃N+1.

Also, µ̃max is determined in a way that e−δµ̃n for µ̃n ≥ µ̃max decays to low
enough level of the reflection error of propagating modes. The optimal pa-
rameters for minimizing reflection errors resulting from the absorbing boundary
condition will be discussed in Subsection 2.2.

The following subsections are devoted to interpreting CRBC in different
forms.

2.1. CRBC as an approximate DtN operator

In this subsection we shall interpret CRBC as an approximate DtN operator.
Since the auxiliary variables can be written as the series similar to (2.3)

ϕj(x, y) = (AjN +BjNx)YN (y) +
∑
n 6=N

(Ajne
iµnx +Bjne

−iµnx)Yn(y),

the formulas (2.6)-(2.8) show that for n 6= N

(aj + iµn)Ajn = (ãj − iµn)Aj+1
n and (aj − iµn)Bjn = (ãj + iµn)Bj+1

n (2.11)

with the terminal condition

AP+1
n = BP+1

n . (2.12)

Denoting

Rnj,m =


m∏
`=j

ã` + iµn
a` − iµn

for j ≤ m,

1 for j > m,

Qnj,m =


m∏
`=j

a` + iµn
ã` − iµn

for j ≤ m,

1 for j > m,

it is easy to see from (2.11) and (2.12) that

Bn = Rn0,PB
P+1
n and AP+1

n = Qn0,PAn,
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from which we obtain
Bn = Zn0,PAn. (2.13)

Here

Znj,m = Qnj,mR
n
j,m =

m∏
`=j

(a` + iµn)(ã` + iµn)

(a` − iµn)(ã` − iµn)
. (2.14)

Since |Zn0,P | is the ratio of the amplitude of the left-going (reflecting) component
to that of the right-going (radiating) component, it is called the reflection coef-
ficient of the n-th mode. For n = N , we get ajB

j
N = ãjB

j+1
N with the terminal

condition BPN = 0, which results in

BN = 0. (2.15)

Now, for given Dirichlet trace u =
∑∞
n=0 unYn of u on ΓE , that is, un =

An + Bn = (1 + Zn0,P )An from (2.13) for n 6= N and uN = AN from (2.15) for
n = N , the Neumann trace of u on ΓE is given by

∂u

∂ν
= BNYN +

∑
n 6=N

iµn(An −Bn)Yn =

∞∑
n=0

iµn
1− Zn0,P
1 + Zn0,P

unYn

due to (2.13) and (2.15). Finally, we define Tc : H1/2(ΓE)→ H−1/2(ΓE) by

Tc(u) =

∞∑
n=0

iµn

(
1− Zn0,P
1 + Zn0,P

)
unYn (2.16)

for u =
∑∞
n=0 unYn, which is a Dirichlet-to-Neumann operator for solutions to

the Helmholtz equation satisfying CRBC on ΓE . Here, we note that

|Zn0,P | =



np−1∏
j=0

∣∣∣∣ (kcj − µn)(kc̃j − µn)

(kcj + µn)(kc̃j + µn)

∣∣∣∣ < 1 for n < N,

np+ne−1∏
j=np

∣∣∣∣ (σj − µ̃n)(σ̃j − µ̃n)

(σj + µ̃n)(σ̃j + µ̃n)

∣∣∣∣ < 1 for n > N.

In addition, since limn→∞ Zn0,P = 1 for given parameters aj and ãj , |(1 −
Zn0,P )/(1 + Zn0,P )| is bounded independently of n and hence the operator Tc
is well-defined. Thus, the problem supplemented with CRBC on ΓE can be
written in terms of the approximate DtN operator Tc,

−∆u− k2u = f in Ω,

∂u

∂ν
= 0 on Γc,

∂u

∂ν
− Tc(u) = 0 on ΓE .

(2.17)
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2.2. CRBC as a rational approximation

The exact DtN boundary condition for the n-th mode un of the solution u
is given by

∂un
∂ν

= iµnun on ΓE . (2.18)

If we denote −µ2
n = zn, the DtN operator for the n-mode is the multiplication

by
√
zn = iµn.

On the other hand, CRBC for the n-th mode is defined as

∂un
∂ν

= S(zn)un, (2.19)

where

S(zn) = iµn
1− Zn0,P
1 + Zn0,P

. (2.20)

Denoting P(x) =
∏P
j=0(aj + x)(ãj + x), a polynomial of degree 2P + 2, the

reflection coefficient Zn0,P can be written as

Zn0,P =
P(iµn)

P(−iµn)
.

Then it is clear that

S(zn) =
√
zn
P(−√zn)− P(

√
zn)

P(−√zn) + P(
√
zn)

is an even rational approximation to
√
zn of (2P + 2, 2P + 2)-type and so S(zn)

can be viewed as a rational approximation of (P + 1, P + 1)-type as a function
of zn. Since the relative averaged error of the rational approximation is given
by

2

∣∣∣∣√zn − S(zn)
√
zn + S(zn)

∣∣∣∣ = 2
∣∣Zn0,P ∣∣ ,

the convergence of the rational approximation depends considerably on select-
ing parameters under the conditions (2.9) with regard to the minimization of
the reflection coefficient |Zn0,P |. Alternatively, we may select parameters aj and
ãj in C rather than real or purely imaginary parameters to minimize the er-
ror of S(z) over [−k2,−µ2

min] ∪ [µ̃2
min, µ̃

2
max]. However since it is much easier

to handle the minimization problem with parameters satisfying (2.9) than the
general minimization problem in the complex plane, we restrict ourselves to the
minimization problem with the conditions (2.9), and it allows us to separate the
minimization of |Zn0,P | for propagating modes and evanescent modes. Here we
note that when the parameters are chosen to be purely imaginary for propagat-
ing modes and real for evanescent modes, this problem is related with the third
Zolotarev problem, see e.g., [29].

Noting that∣∣∣∣ (aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)

∣∣∣∣ = 1 for

{
np ≤ j < np + ne if 0 ≤ n ≤ N,
0 ≤ j < np if N ≤ n, (2.21)
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the optimal parameters aj and ãj can be obtained by solving two separate min-
max problems

ρp ≡ min
a0,...,anp−1,

ã0,...,ãnp−1∈iR−

max
µ∈[µmin,k]

np−1∏
j=0

∣∣∣∣ (aj + iµ)(ãj + iµ)

(aj − iµ)(ãj − iµ)

∣∣∣∣ , (2.22)

ρe ≡ min
anp ,...,anp+ne−1

ãnp ,...,ãnp+ne−1∈R+

max
µ∈[µ̃min,µ̃max]

np+ne−1∏
j=np

∣∣∣∣ (aj − µ)(ãj − µ)

(aj + µ)(ãj + µ)

∣∣∣∣ . (2.23)

In [2, 27] the analytic solutions to the min-max problems are investigated by
using elliptic functions. The exponential decay of the reflection coefficients is
established as well. For more precise discussion, we recall the elliptic functions
defined in terms of the complete elliptic integral of the first kind

K(γ) =

∫ 1

0

1√
(1− t2)(1− γ2t2)

dt

for 0 < γ < 1: the sine amplitude sn(w, γ) is a map from the interval [0,K(γ)]
to the another interval [0, 1] given by the relation

w =

∫ sn(w,γ)

0

1√
(1− t2)(1− γ2t2)

dt, (2.24)

and the delta amplitude dn(w, η) is defined by

dn(w, γ) =
√

1− γ2sn2(w, γ).

Let γp = µmin/k and γe = µ̃min/µ̃max and denote γ̃p =
√

1− γ2
p and γ̃e =√

1− γ2
e . We use (ρ, γ, γ̃,m) = (ρp, γp, γ̃p, 2np) for the propagating component

and (ρ, γ, γ̃,m) = (ρe, γe, γ̃e, 2ne) for the evanescent component for the sake of
simple presentation. Then the CRBC parameters are related with the solutions
to the Zolotarev problem on the intervals [γ, 1], that can be given by

sj = dn

((
1− 2j + 1

2m

)
K(γ̃), γ̃

)
for j = 0, . . . ,m− 1 (2.25)

as seen in Appendix A of [10]. See also [2, 5, 27]. With these values, we obtain
that

cj = s2j , c̃j = s2j+1 for γ = γp
σj = s2j µ̃max, σ̃j = s2j+1µ̃max for γ = γe.

(2.26)

It is also shown in [10, A.2] or [27, (3.17)] that the reflection coefficient ρ satisfies

2qm/4

1 + qm/2
≤ ρ ≤ 2qm/4, (2.27)
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Figure 2: Rational approximation S(z) to
√
z with optimal parameters for np = 3, 5, 7, 9.

with Jacobi’s nome q = exp(−πK(η̃)/K(η)), where η and η̃ are given by η1/2 =

(1− γ1/2)/(1 + γ1/2), η̃ =
√

1− η2. In addition, the approximate behavior of
ρ,

ρ ≤ e−Cm/ ln(1/γ), (2.28)

can be shown by using an approximate expression of the nome as seen in [21, A.9]
(see also [29]). Hereafter C denotes a generic constant that may take different
values at different places but does not depend on np, ne and CRBC parameters.
In order to demonstrate the convergence of the rational approximation S(z) to√
z in the interval [0.01, 100] as an example, we choose bounds for parameters

to be µmin = 0.1, k = 10 and determine optimal parameters for np = 3, 5, 7, 9.
The results are presented in Figure 2, where we observe that the errors in S(z)
are reduced uniformly in the interval [0.01, 100] as np increases.

Here we note that compared with the reflection coefficients of the CRBC
with aj = ãj analyzed in [17] which are the optimal values of the min-max
problem

min
a0,...,anp−1∈iR−

max
µ∈[µmin,k]

np−1∏
j=0

∣∣∣∣ (aj + iµ)2

(aj − iµ)2

∣∣∣∣ ,
for instance, for propagating components, those of the new CRBC with more
degrees of freedom are reduced by factor 1/2 due to (2.27) as seen Table 1.
Indeed, when np auxiliary variables are used for propagating components in

two different CRBCs, for small qnp/2 the former one is approximately
(
2qnp/4

)2
whereas the latter one is given by approximately 2q2np/4.

3. Parameter selections

It is important to choose appropriate parameters for efficient performance
of CRBC. The general idea of how to select parameters is discussed in [17]. In
practice, if the number of important modes involved in solutions is small and the
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k one-sided, aj = ãj two-sided, aj 6= ãj ratio

4 1.806194e-07 9.030969e-08 0.500000
5 3.793422e-09 1.896711e-09 0.500000
6 2.571956e-10 1.285978e-10 0.500000
7 4.247227e-06 2.123613e-06 0.500000
8 1.806194e-07 9.030969e-08 0.500000
9 2.093552e-08 1.046776e-08 0.500000
10 2.288380e-05 1.144190e-05 0.500000
11 1.220426e-06 6.102130e-07 0.500000
12 1.806194e-07 9.030969e-08 0.500000
13 7.842724e-05 3.921362e-05 0.500000

Table 1: The comparison between the reflection coefficients ρp of the CRBC of [17] and the
new CRBC for np = 3 and different wavenumbers

corresponding −iµn can be estimated by using a Lanczos algorithm for the cross-
sectional Laplace operator, then we can use these values for parameters so that
the reflection coefficients |Zn0,P | for those modes vanish due to the formula (2.14),
i.e., the CRBC with these parameters serves as an exact radiation condition for
those modes. If it appears not to be efficient to estimate all −iµn for important
modes, then we estimate µmin and µ̃min by computing eigenvalues near to k2

and use them for the bounds of the min-max problem. In order to balance the
reflection errors of three parts, we choose parameters as follows.

i. For given np ≥ 1, we solve the min-max problem (2.22) to find 2np imag-
inary parameters and estimate ρp in the interval [µmin, k] with µmin =
µN−1.

ii. We decide the upper bound µ̃max of the min-max problem (2.23) for rel-
atively slowly decaying evanescent modes by solving the inequality

e−µ̃maxδ ≤ ρp.

It guarantees that reflection errors of all evanescent modes whose decay
rate µ̃n is larger than µ̃max are less than ρp.

iii. We decide ne ≥ 1 and 2ne real parameters of the solution to the min-max
problem (2.23) in the interval [µ̃min, µ̃max] with µ̃min = µ̃N+1 such that

e−µ̃N+1δρe ≤ ρp.

In this procedure, with decreasing tolerance ε the required number of pa-
rameters and µ̃max satisfies

np ∝ ln

(
1

ε

)
· ln
(

1

γ p

)
:= ζp, (3.1)

µ̃max ∝
1

δ
· ln 1

ε
, (3.2)

ne ∝ ln

(
1

ε

)
· ln
(

1

δµ̃min

)
+ ln

(
1

ε

)
· ln ln

(
1

ε

)
:= ζe. (3.3)

11



np ρp µ̃max ne e−µ̃N+1δρe

1 2.0952e-02 7.7310e+01 2 1.5324e-03
2 2.1949e-04 1.6848e+02 4 3.3768e-05
3 2.2994e-06 2.5966e+02 6 9.4755e-07
4 2.4089e-08 3.5083e+02 9 3.6646e-09
5 2.5235e-10 4.4200e+02 11 1.5373e-10
6 2.6437e-12 5.3318e+02 14 9.5911e-13

Table 2: Reflection errors of CRBC when k = 10π, δ = 0.05, µmin = µN−1 ≈ 13.6938 and
µ̃min = µ̃N+1 ≈ 14.3965 with N = 10.
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Figure 3: Reflection coefficients of propagating modes when µmin � 1.

For example, for k = 10π and δ = 0.05, CRBC can suppress the reflection errors
with respect to increasing np as in Table 2.

In a certain situation, µmin or µ̃min is very small and in such a case the decay
rate of ρp or ρe becomes worse as µmin or µ̃min is closer to zero. In particular,
when there is no cutoff mode, that is, there is no λn such that k 6= λn, but
k is close to λn so that µmin(or µ̃min) � 1 (the mode corresponding to such
µn is called a near-cutoff mode), we may need to increase np(or ne) to achieve
desirable accuracy of the absorbing boundary condition. However, instead of
increasing np or ne, it is preferable to use −iµn of near-cutoff modes for a
parameter aj and to estimate one more µn of the next one to the near-cutoff
mode and employ it for a lower bound of the min-max problem. An example
for k = 30π + 10−6 and Θ = (0, 1) is illustrated in Figure 3 showing that the
result of np = 4 (red-solid line) with the reflection of the near-cutoff mode
(n = 30) eliminated by CRBC is superior to those of other np = 4, 5, 6, 7 with
µmin equal to µn of the near-cutoff mode. Thus, when we choose parameters,
we first examine whether a near-cutoff mode exists. If it exists, we choose
a parameter in a way that CRBC eliminates the reflection of the near-cutoff
mode and follow the general rule for the rest of parameters as above. We would
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like to mention that the well-known absorbing boundary condition PML suffers
from reducing reflection errors of near-cutoff modes. According to the results in
[24], it turns out that reflection errors of the PML method decrease at the rate
of e−2σL, where L and σ stand for the PML width and strength, respectively.
In addition, the number of grid points, NPML, along the axis of waveguide in
the PML damping zone is proportional to σL/µmin. As a consequence, in order
to keep the error less than tolerance ε we have

NPML ∝
1

µmin
ln

1

ε
.

Noting that NPML corresponds to the number of auxiliary variables of CRBC,
PML requires extremely larger computational resource than CRBC.

In the rest of this section we give some properties of the reflection coefficient
when the number of parameters solving the min-max problems grows at a rate
of (3.1)-(3.3) with respect to tolerance ε.

Lemma 3.1. Let sj be the values defined by (2.25). Then the arithmetic mean
sav of sj is asymptotically equivalent to π/(2K(γ̃)) as m→∞, that is

lim
m→∞

sav
π/(2K(γ̃))

= 1. (3.4)

We denote it by sav ∼ π/K(γ̃) as m→∞.

Proof. Noting that |dn′′(·, γ̃)| ≤ γ̃ ≤ 1, we can show that the midpoint quadra-
ture rule for dn(·, γ̃) in the interval [0,K(γ̃)] satisfies∣∣∣∣∣∣

∫ K(γ̃)

0

dn(x, γ̃)dx−
m−1∑
j=0

sj
K(γ̃)

m

∣∣∣∣∣∣ ≤ K(γ̃)

6

(
K(γ̃)

2m

)2

.

Therefore, by invoking that an anti-derivative of dn(x, γ̃) with respect to x is
sin−1 sn(x, γ̃) (see [1, 16.24.3]) together with the fact that sn(K(γ̃), γ̃) = 1 and
sn(0, γ̃) = 0 resulting from (2.24), we have∣∣∣∣ π

2K(γ̃)
− sav

∣∣∣∣ ≤ 1

24

(
K(γ̃)

m

)2

, (3.5)

which can be written as∣∣∣∣1− sav
π/(2K(γ̃))

∣∣∣∣ ≤ 1

12π

K(γ̃)3

m2
.

If γ = γp, then K(γ̃) is constant and hence (3.4) follows.
In case that γ = γe, using the asymptotic behavior of K(γ̃e) as γ̃e → 1,

K(γ̃e) ∼ −
1

2
ln(1− γ̃e) ∼ ln

(
1

γe

)
as γ̃e → 1 (3.6)

13



together with (3.2) and (3.3), we obtain that

lim
m→∞

K(γ̃)3

m2
≤ lim
m→∞

C
(ln (µ̃max/µ̃min))3

(ln (1/ε) · ln ln (1/ε))
2 = lim

m→∞
C

(ln ln (1/ε))3

(ln (1/ε) · ln ln (1/ε))
2 = 0

since ε→ 0 as m→∞, which completes the proof for γ = γe.

Lemma 3.2. For given M > N , let σav be the arithmetic mean of the real
parameters σj , σ̃j for 0 ≤ j < ne satisfying (2.10) with µ̃max = µ̃M . Then the
reflection coefficients of modes for n > M are bounded by

|Zn0,P | ≤
∣∣∣∣ µ̃n − σavµ̃n + σav

∣∣∣∣2ne

. (3.7)

Proof. Using (2.21), we see that

|Zn0,P | =
ne−1∏
j=0

(µ̃n − σj)(µ̃n − σ̃j)
(µ̃n + σj)(µ̃n + σ̃j)

for n > M.

Thus, it suffices to show that for any m positive real numbers α1, . . . , αm such
that µ̃min ≤ αj ≤ µ̃max and for the fractional function h(x) = (µ̃− x)/(µ̃+ x)
with µ̃ > µ̃max

m∏
j=1

h(αj) ≤

(
h

(∑m
j=1 αn

m

))m
.

Since 0 < h(x) < 1 for µ̃min ≤ x ≤ µ̃max, the above inequality is equivalent to

− lnh

(∑n
j=1 αn

m

)
≤ − 1

m

m∑
j=1

lnh(αj). (3.8)

Now, noting that − lnh(x) is convex in the interval µ̃min ≤ x ≤ µ̃max, the
inequality (3.8) immediately follows from Jensen’s inequality.

Lemma 3.3. Assume that M > N and ne ≥ 1 are determined by the parameter
selection procedure as above for np ≥ 1 so that (3.1)-(3.3) hold, and let aj and
ãj be the parameters satisfying the min-max problems (2.22) and (2.23) with the
conditions (2.10) and µ̃max = µ̃M . Then the reflection coefficients of modes for
n > M satisfy

1

|1 + Zn0,P |
≤ C. (3.9)

Proof. We will show that Zn0,P is away from −1 for all n ≥ M independently
of np, ne and CRBC parameters. In the proof, we keep in mind that np → ∞,
ne →∞ as ε→ 0 and vice versa according to (3.1), (3.2) and (3.3).

We first show that for sufficiently large µ̃n

arg(Zn0,np−1) <
2π

3
. (3.10)
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Recalling the definition of the imaginary parameters aj = −ikcj for 0 ≤ j < np,
since

0 < arg(µ̃n + ikcj) = tan−1

(
kcj
µ̃n

)
<
kcj
µ̃n

for n > M

and the analogous inequality for ãj holds, by using (3.5) we can show that

0 < arg(Zn0,np−1) <

np−1∑
j=0

2k(cj + c̃j)

µ̃n
≤ 4npk

µ̃n

(
π

2K(γ̃p)
+
K(γ̃p)

2

96n2
p

)
for n > M.

We denote by

µ̃ang :=
4npk

2π/3

(
π

2K(γ̃p)
+
K(γ̃p)

2

96n2
p

)
,

which allows us to have that if µ̃n ≥ µ̃ang, then <(Zn0,P ) > −1/2 and hence
|1 + Zn0,P | > 1/2. From (3.1) we note that µ̃ang has the asymptotically same
order of magnitude as

µ̃ang �
3k

K(γ̃p)
ln

(
1

γp

)
· ln
(

1

ε

)
as ε→ 0 (3.11)

with respect to tolerance ε for reflection errors.
Second, for 0 < R < 1 we examine an upper bound µ̃R of µ̃n such that

|Zn0,P | < R. We begin by solving the equation(
µ̃R − σav
µ̃R + σav

)2ne

= R, (3.12)

which leads us to

µ̃R = σav
1 +R1/(2ne)

1−R1/(2ne)
∼ πµ̃max

2K(γ̃e)

4ne
ln(1/R)

as ne →∞.

Here we also used the asymptotic equivalence in Lemma 3.1. We further show
by (3.6), (3.2) and (3.3) that

µ̃R ∼
πµ̃max

ln(1/γe)

2ne
ln(1/R)

� 2π

δ ln(1/R)
·
(

ln
1

ε

)2

as ε→ 0. (3.13)

Due to (3.11) and (3.13) we can show that there exists ε0 > 0 such that
µ̃R > µ̃ang for ε < ε0. It implies that if CRBC with large np and ne is applied so
that ε < ε0, then |1+Zn0,P | > 1−R for µ̃n ≤ µ̃R due to (3.12) and |1+Zn0,P | > 1/2
for µ̃n > µ̃R(> µ̃ang) due to (3.10). In order to examine the case that ε ≥ ε0,
we note that there are only finite number of CRBCs of order (np, ne) that result
in ε ≥ ε0. Thus, we can find R = minε>ε0,n>M |1+Zn0,P | > 0 independent of np
and ne. As a conclusion, we show that |1 + Zn0,P | > min{R, 1 −max{R, 1/2}}
for n > M and for any np, ne ≥ 1, which completes the proof.
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4. Well-posedness and convergence analysis

This section is devoted to establishing the well-posedness of the wave prop-
agation problem (2.17) with CRBC for the radiation condition on ΓE and pro-
viding the convergence analysis of approximate solutions satisfying CRBC.

4.1. Preliminaries

We consider the model problem in the truncated domain supplemented with
the DtN boundary condition for a radiation condition on the artificial boundary
ΓE , assuming that k2 is not an eigenvalue of the problem (2.1) and there are
wave sources f ∈ H−1(Ω) supported for x < −δ and g ∈ H−1/2(ΓE).

−∆u− k2u = f in Ω,

∂u

∂ν
= 0 on Γc,

∂u

∂ν
− T (u) = g on ΓE .

(4.1)

The corresponding variational problem is to find u ∈ H1(Ω) such that

A(u, φ) = 〈f, φ〉1,Ω + 〈g, φ〉 1
2 ,ΓE

for all φ ∈ H1(Ω), (4.2)

where A(·, ·) is a sesquilinear form defined in H1(Ω)×H1(Ω) by

A(u, φ) = (∇u,∇φ)Ω − k2(u, φ)Ω − 〈Tu, φ〉 1
2 ,ΓE

.

From here on we use (·, ·)Ω and (·, ·)ΓE
for the L2-inner products in Ω and ΓE ,

respectively. Also, 〈·, ·〉1,Ω and 〈·, ·〉 1
2 ,ΓE

stand for the duality pairings between

H−1(Ω) and H1(Ω) and between H−1/2(ΓE) and H1/2(ΓE), respectively. We
have the well-posedness of the problem (4.2) as seen in [6, 16, 24].

Lemma 4.1. Assume that k2 is not an eigenvalue of the problem (2.1). Then
there exists a positive constant C such that

‖u‖H1(Ω) ≤ C sup
06=φ∈H1(Ω)

|A(u, φ)|
‖φ‖H1(Ω)

and

‖u‖H1(Ω) ≤ C sup
06=φ∈H1(Ω)

|A(φ, u)|
‖φ‖H1(Ω)

for all u ∈ H1(Ω). Therefore, the problem (4.2) has a unique solution u ∈ H1(Ω)
satisfying

‖u‖H1(Ω) ≤ C(‖f‖H−1(Ω) + ‖g‖H−1/2(ΓE)). (4.3)

Lemma 4.1 also implies that the adjoint problem for (4.2),

A(φ, u) = 〈φ, f〉1,Ω + 〈φ, g〉 1
2 ,ΓE

for all φ ∈ H1(Ω)
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has a unique solution u satisfying the stability estimate (4.3). Here we note that
the solution u to the adjoint problem satisfies the boundary condition

∂u

∂ν
− T ∗(u) = g on ΓE ,

where T ∗ : H1/2(ΓE)→ H−1/2(ΓE) is the adjoint operator of the DtN operator
T defined by

〈T (φ), ψ〉 1
2 ,ΓE

= 〈φ, T ∗(ψ)〉 1
2 ,ΓE

for φ, ψ ∈ H1/2(ΓE), that is, for φ =
∑∞
n=0 φnYn

T ∗(φ) =

∞∑
n=0

iµnφnYn.

As an approximate adjoint DtN operator, we introduce the adjoint CRBC op-
erator T ∗c : H1/2(ΓE)→ H−1/2(ΓE) defined by

〈Tc(φ), ψ〉 1
2 ,ΓE

= 〈φ, T ∗c (ψ)〉 1
2 ,ΓE

for φ, ψ ∈ H1/2(ΓE). Analogously, T ∗c is given by

T ∗c (u) =

∞∑
n=0

iµn
1− Zn0,P
1 + Zn0,P

unYn.

4.2. Well-posedness

Now, we consider the problem equipped with CRBC instead of the exact
DtN boundary condition on the artificial boundary ΓE ,

−∆u− k2u = f in Ω,

∂u

∂ν
= 0 on Γc,

∂u

∂ν
− Tc(u) = g on ΓE .

(4.4)

The corresponding variational problem can be written as finding u ∈ H1(Ω)
satisfying

Ac(u, φ) = 〈f, φ〉1,Ω + 〈g, φ〉 1
2 ,ΓE

for all φ ∈ H1(Ω), (4.5)

where Ac(·, ·) is a sesquilinear form defined in H1(Ω)×H1(Ω) by

Ac(u, φ) = (∇u,∇φ)Ω − k2(u, φ)Ω − 〈Tc(u), φ〉 1
2 ,ΓE

.

To analyze the well-posedness of the problem (4.5), we will study inf-sup
conditions for the sesquilinear form Ac(·, ·). If Tc converged to T as operators
from H1/2(ΓE) to H−1/2(ΓE) as np, ne → ∞, then the inf-sup conditions of
the sesquilinear form Ac(·, ·) would be obtained from the inf-sup conditions of
A(·, ·) by a simple kick-back argument. However this approach is not available
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since Tc does not converge to T in norm. Instead we use the convergence of
Tc(φ) to T (φ) if φ is a trace on ΓE of a radiation solution, which is established
in the sequence of lemmas. Let P` : H1/2(ΓE) → H1/2(ΓE) be the projection
onto the finite dimensional subspace spanned by {Yn}`n=0, i.e.,

P`

( ∞∑
n=0

unYn

)
=
∑̀
n=0

unYn.

The first lemma is concerned with the convergence of Tc to T for the prop-
agating component as np →∞.

Lemma 4.2. Assume that the imaginary parameters aj and ãj for 0 ≤ j < np
are the solution of the min-max problem (2.22). Then it holds that

‖(Tc − T )PN (φ)‖H−1/2(ΓE) ≤ Ce−Cnp/ ln(1/γp)‖φ‖H1/2(ΓE)

for φ ∈ H1/2(ΓE) and for sufficiently large np.

Proof. For φ =
∑∞
n=0 φnYn ∈ H1/2(ΓE), by (2.28) and |iµn|2 ≤ C(1 + λ2

n) we
show that

‖(Tc − T )PN (φ)‖2H−1/2(ΓE) =

N∑
n=0

(1 + λ2
n)−1/2

∣∣∣∣∣iµn 2Znn,p
1 + Zn0,P

φn

∣∣∣∣∣
2

≤ Ce−Cnp/ ln(1/γp)

(1− e−Cnp/ ln(1/γp))2

N∑
n=0

(1 + λ2
n)1/2|φn|2

≤ Ce−Cnp/ ln(1/γp)‖φ‖2H1/2(ΓE)

for sufficient large np ≥ 1 such that e−Cnp/ ln(1/γp) < 1/2.

Under the assumption that φ is a trace of a radiating solution on ΓE , we
prove the convergence of Tc for the evanescent component in two lemmas. The
first lemma is associated with finite superpositions of relatively slowly decaying
evanescent modes.

Lemma 4.3. Assume that φ ∈ H1/2(ΓE) is a trace on ΓE of a radiating solution
u ∈ H1(Ω) to the problem (4.1). Also, assume that the real parameters aj and
ãj for np ≤ j < np+ne are the solution to the the min-max problem (2.23) with
µ̃max = µ̃M for M > N . Then it holds that

‖(Tc − T )(PM − PN )(φ)‖H−1/2(ΓE) ≤ Ce−µ̃N+1δe−Cne/ ln(1/γe)‖u‖H1(Ω)

for sufficiently large ne ≥ 1 such that e−Cne/ ln(1/γe) < 1/2.

Proof. Let u be the radiating solution to the problem (4.1) of the form

u(x, y) =

∞∑
n=0

Ane
iµn(x+δ)Yn(y) for x > −δ. (4.6)
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Then φ can be written as

φ =

∞∑
n=0

φnYn =

∞∑
n=0

Ane
iµnδYn on H1/2(ΓE). (4.7)

As done in Lemma 4.2, we can show that

‖(Tc − T )(PM − PN )(φ)‖2H−1/2(ΓE) =

M∑
n=N+1

(1 + λ2
n)−1/2

∣∣∣∣∣iµn 2Znn,p
1 + Zn0,P

φn

∣∣∣∣∣
2

≤ Ce−Cne/ ln(1/γe)
M∑

n=N+1

(1 + λ2
n)1/2|φn|2

for sufficient large ne ≥ 1 such that e−Cne/ ln(1/γe) < 1/2. Therefore, by using
(4.7) and a trace inequality we obtain that

‖(Tc − T )(PM − PN )(φ)‖2H−1/2(ΓE) ≤ Ce
−Cne/ ln(1/γe)

M∑
n=N+1

(1 + λ2
n)1/2e−2µ̃nδ|An|2

≤ Ce−2µ̃N+1δe−Cne/ ln(1/γe)‖u‖2H1(Ω),

which completes the proof.

Finally, we prove the convergence of Tc for remaining evanescent modes.

Lemma 4.4. Let φ ∈ H1/2(ΓE) be a trace on ΓE of a radiating solution u ∈
H1(Ω) to the problem (4.1). Assume that M > N and ne ≥ 1 are determined
by the parameter selection procedure for np ≥ 1 so that (3.1)-(3.3) hold, and let
aj and ãj be the parameters satisfying the min-max problems (2.22) and (2.23)
with the conditions (2.10) and µ̃max = µ̃M . Then it holds that

‖(Tc − T )(I − PM )φ‖H−1/2(ΓE) ≤ Ce−µ̃M+1δ‖u‖H1(Ω). (4.8)

Proof. Assume that u and φ are written as (4.6) and (4.7). By Lemma 3.3, (4.7)
and the fact that |iµn|2 ≤ C(1 + λ2

n) and |Zn0,P | < 1, we are led to

‖(Tc − T )(I − PM )φ‖2H−1/2(ΓE) =

∞∑
n=M+1

(1 + λ2
n)−1/2

∣∣∣∣∣iµn 2Zn0,P
1 + Zn0,P

φn

∣∣∣∣∣
2

≤ C
∞∑

n=M+1

(1 + λ2
n)1/2e−2µ̃nδ|An|2.

Thus, we can see that by a trace inequality

‖(Tc − T )(I − PM )φ‖2H−1/2(ΓE) ≤ Ce
−2µ̃M+1δ

∞∑
n=M+1

(1 + λ2
n)1/2|An|2

≤ Ce−2µ̃M+1δ‖u‖2H1(Ω)

which is the required estimate.
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For the exponential convergence result we denote

E(np, ne,M) = C(e−Cnp/ ln(1/γp) + e−µ̃N+1δe−Cne/ ln(1/γe) + e−µ̃M+1δ).

Now combining Lemma 4.2, 4.3 and 4.4, leads to the following convergence
result.

Lemma 4.5. Let φ ∈ H1/2(ΓE) be a trace on ΓE of a radiating solution u ∈
H1(Ω) to the problem (4.1). Assume that M > N and ne ≥ 1 are determined
by the parameter selection procedure for np ≥ 1 so that (3.1)-(3.3) hold, and let
aj and ãj be the parameters satisfying the min-max problems (2.22) and (2.23)
with the conditions (2.10) and µ̃max = µ̃M and

e−Cnp/ ln(1/γp) < 1/2 and e−Cne/ ln(1/γe) < 1/2.

Then it holds that

‖(Tc − T )φ‖H−1/2(ΓE) ≤ E(np, ne,M)‖u‖H1(Ω). (4.9)

The convergence of the adjoint operator holds as well.

Lemma 4.6. Assume the same conditions as those in Lemma 4.5. Then the
same convergence result for the adjoint operators holds.

‖(T ∗c − T ∗)φ‖H−1/2(ΓE) ≤ E(np, ne,M)‖u‖H1(Ω). (4.10)

As the last ingredient for the well-posedness analysis, we investigate Tc by
breaking into two parts

Tc = T 1
c + T 2

c

defined by

T 1
c u = Tc(I − PN )u =

∞∑
n=N+1

iµn
1− Zn0,P
1 + Zn0,P

un,

T 2
c u = TcPNu =

N∑
n=0

iµn
1− Zn0,P
1 + Zn0,P

un

in the following lemma.

Lemma 4.7. Assume that np is chosen such that e−Cnp/ ln(1/γp) < 1/2. The
real part of the operator T 1

c is non-positive in H1/2(ΓE) in the sense of

<(〈T 1
c (u), u〉 1

2 ,ΓE
) ≤ 0 (4.11)

for u ∈ H1/2(ΓE). Also, it holds that

|〈T 2
c (u), u〉 1

2 ,ΓE
| ≤ C‖u‖2L2(ΓE) (4.12)

for u ∈ H1/2(ΓE).
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Proof. Let u =
∑∞
n=0 unYn ∈ H1/2(ΓE). Since |Zn0,P | < 1 for all n, we have

<((1− Zn0,P )/(1 + Zn0,P )) > 0

for all n and thereby we can show that

<(〈T 1
c (u), u〉 1

2 ,ΓE
) =

∞∑
n=N+1

(−µ̃n)<

(
1− Zn0,P
1 + Zn0,P

)
|un|2 ≤ 0.

For establishing (4.12), we invoke that |Zn0,P | ≤ e−Cnp/ ln(1/γp) < 1/2 for
0 ≤ n < N to see that ∣∣∣∣∣iµn 1− Zn0,P

1 + Zn0,P

∣∣∣∣∣ < 3k.

It then follows that

|〈T 2
c (u), u〉 1

2 ,ΓE
| ≤

N∑
n=0

∣∣∣∣∣iµn 1− Zn0,P
1 + Zn0,P

∣∣∣∣∣ |un|2 ≤ C‖u‖2L2(ΓE),

which completes the proof.

We are now in a position to prove the well-posedness of the problem (4.5).

Theorem 4.8. Assume that k2 is not an eigenvalue of the problem (2.1). Also,
assume that M > N and ne ≥ 1 are determined by the parameter selection
procedure for large np and the reflection errors satisfy

e−Cnp/ ln(1/γp) < 1/2 and e−Cne/ ln(1/γe) < 1/2.

Then it holds that

‖u‖H1(Ω) ≤ C sup
06=φ∈H1(Ω)

|Ac(u, φ)|
‖φ‖H1(Ω)

(4.13)

and

‖u‖H1(Ω) ≤ C sup
06=φ∈H1(Ω)

|Ac(φ, u)|
‖φ‖H1(Ω)

(4.14)

for all u ∈ H1(Ω). Therefore, the problem (4.5) has a unique solution u ∈ H1(Ω)
such that

‖u‖H1(Ω) ≤ C(‖f‖H−1(Ω) + ‖g‖H−1/2(ΓE)).

Proof. We only prove (4.13), in that (4.14) follows from (4.13) and the fact
Ac(u, φ) = Ac(φ̄, ū). To prove (4.13), it suffices to show that if u ∈ H1(Ω)
satisfies

Ac(u, φ) = F (φ) for φ ∈ H1(Ω) (4.15)

for some F ∈ H−1(Ω), then it holds that

‖u‖H1(Ω) ≤ C‖F‖H−1(Ω). (4.16)
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We start by examining the real part of Ac(u, u),

<(Ac(u, u)) = ‖u‖2H1(Ω) − (k2 + 1)‖u‖2L2(Ω) −<(〈T 1
c (u), u〉 1

2 ,ΓE
)−<(〈T 2

c (u), u〉 1
2 ,ΓE

).

From (4.11) and (4.12) in Lemma 4.7, it follows that

‖u‖2H1(Ω) ≤ |Ac(u, u)|+ (k2 + 1)‖u‖2L2(Ω) + C‖u‖2L2(ΓE). (4.17)

From now on, we shall estimate three terms in the right hand side of (4.17).
The first term is easily estimated by

|Ac(u, u)| = |F (u)| ≤ ‖F‖H−1(Ω)‖u‖H1(Ω). (4.18)

For the second and third terms, we consider a solution w ∈ H1(Ω) to the
adjoint problem

A(φ,w) = (φ, u)Ω + (φ, u)ΓE
for all φ ∈ H1(Ω), (4.19)

satisfying
‖w‖H1(Ω) ≤ C(‖u‖L2(Ω) + ‖u‖L2(ΓE)). (4.20)

Here we note that w̄ is a radiating solution. By taking φ = u in (4.19), using
Lemma 4.6, (4.20) and a trace inequality we show that

‖u‖2L2(Ω) + ‖u‖2L2(ΓE) = A(u,w) = Ac(u,w) + 〈(Tc − T )u,w〉ΓE

= F (w) + 〈u, (T ∗c − T ∗)w〉ΓE

≤ ‖F‖H−1(Ω)‖w‖H1(Ω) + E(np, ne,M)‖u‖H1(Ω)‖w‖H1(Ω)

≤
(
‖F‖H−1(Ω) + E(np, ne,M)‖u‖H1(Ω)

)
(‖u‖L2(Ω) + ‖u‖L2(ΓE)).

As a consequence, it can be obtained that

(k2 + 1)‖u‖2L2(Ω) + C‖u‖2L2(ΓE) ≤ C
(
‖F‖2H−1(Ω) + E(np, ne,M)2‖u‖2H1(Ω)

)
.

(4.21)
Now, we use (4.18) and (4.21) in (4.17) and apply the arithmetic-geometric

mean inequality to (4.18) with γ > 0 to have

‖u‖2H1(Ω) ≤
(γ

2
+ E(np, ne,M)2

)
‖u‖2H1(Ω) +

(
1

2γ
+ C

)
‖F‖2H−1(Ω).

Finally, by choosing small γ and large np,ne andM such that γ/2+E(np, ne,M)2 <
1/2, (4.16) then follows, which completes the proof.

4.3. Convergence

Now, we are ready to show the convergence of approximate solutions satis-
fying CRBCs as np and ne tend towards infinity.
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Theorem 4.9. Assume the same conditions as those in Theorem 4.8. Let uex

and u be the solutions to the problem (4.2) and (4.5), respectively. Then for
sufficiently large np, ne and M , we have

‖u− uex‖H1(Ω) ≤ E(np, ne,M)‖uex‖H1(Ω).

Proof. Let e = u− uex be the error function. Then e solves the problem

Ac(e, φ) = 〈(Tc − T )uex, φ〉 1
2 ,ΓE

for φ ∈ H1(Ω). (4.22)

From Theorem 4.8 and Lemma 4.5, it can be derived that

‖e‖H1(Ω) ≤ C‖(Tc − T )uex‖H−1/2(ΓE) ≤ E(np, ne,M)‖uex‖H1(Ω),

which is the desired convergence result.

Remark 4.10. We provide the well-posedness and convergence analysis only for
CRBC with optimally chosen parameters for a concise presentation. However
it still holds when some of parameters are equal to −iµn of important modes.
The analysis for this case requires only a minor modification with regard to the
boundedness (3.9).

1. For small tolerance ε > 0, let M > N be an integer such that e−µ̃M+1δ < ε.
We consider the CRBC giving the exact radiation condition to the first
M + 1 modes, that is, all −iµn for 0 ≤ n ≤ M are used for CRBC
parameters. In this case (3.9) holds. Indeed, this case yields that µ̃ang
can be taken to be 6Naav/π with aav being the arithmetic mean of the
axial frequency of propagating modes, and it is a constant independent of
M . Thus, if µ̃M+1 > µ̃ang, then |1 + Zn0,P | > 1/2 for all n > M . In
case that µ̃M+1 ≤ µ̃ang, since there are only finite number of µ̃n such that
µ̃M+1 < µ̃n < µ̃ang, we can find a constant CM such that |1 + Zn0,P | >
CM > 0 for µ̃M+1 < µ̃n < µ̃ang. Therefore, it can be concluded that
|1 + Zn0,P | > min{CM , 1/2}, where the minimum is taken over M such
that µ̃M+1 ≤ µ̃ang. The convergence result of this case can be written as

‖u− uex‖H1(Ω) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω).

2. We consider the CRBC eliminating the reflection of near-cutoff modes
and minimizing those of other modes by using optimally chosen parame-
ters, that is, −iµn of near-cutoff modes is used as a parameter and other
parameters are determined by the formulas (2.26). We can have (3.9)
as the counterparts of (3.11) and (3.13) follow the analogous asymptotic
behaviors. The convergence result of this case can be written as

‖u− uex‖H1(Ω) ≤ C(eCn
′
p/ ln(1/γ′p) + eCn

′
e/ ln(1/γ′e) + e−µ̃M+1δ)‖uex‖H1(Ω),

where

(n′p, γ
′
p, n

′
e, γ

′
e) =

{
(np − 1, k/µN−2, ne, γe) or
(np, γp, ne − 1, µ̃max/µ̃N+2)

depending on whether the near-cutoff mode is a propagating mode or an
evanescent mode.
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5. Practical CRBCs for discretization methods

In order to apply a discretization technique such as the finite element method
to the problem (2.17) with CRBC imposed on ΓE , we need to rephrase the
boundary condition in a tractable form. To this end, we introduce a practical
CRBC involving auxiliary variables defined only on the boundary ΓE . Let ej
be the j-th standard basis vector in CP+2 for j = 0, 1, . . . , P + 1, whose non-
zero entry is one at the j-th component, and let us define a space for auxiliary
variables,

VΓE
= {(φ0, . . . , φP+1) ∈ (L2(ΓE))P+2 : φj+φj+1 ∈ H1(ΓE) for j = 0, . . . , P}.

After eliminating the normal derivatives of auxiliary variables in the recursive
relations (2.7) as done in [17], we can see that if u satisfies CRBC on ΓE , then
there exists Φ = (φ0, . . . , φP+1)t ∈ VΓE

satisfying

∂u

∂ν
e0 = −L ∂2

∂ν2
Φ−MΦ

= L∇2
yΦ + (k2L−M)Φ on ΓE

(5.1)

and ∂
∂νΦ = 0 on ∂ΓE with φ0 = u on ΓE , where L and M are (P + 2)× (P + 2)

symmetric and tridiagonal matrices whose nonzero entries are

Lj,j−1 =
1

aj−1 + ãj−1
, Lj,j =

1

aj−1 + ãj−1
+

1

aj + ãj
, Lj,j+1 =

1

aj + ãj
,

Mj,j−1 =
−a2

j−1

aj−1 + ãj−1
, Mj,j =

aj−1ãj−1

aj−1 + ãj−1
+

aj ãj
aj + ãj

, Mj,j+1 =
−ã2

j

aj + ãj

for j = 0, . . . , P + 1. Here we use the convention that the terms with indices
outside the bounds of the arrays aj and ãj are ignored, for instance,

L0,0 =
1

a0 + ã0
and LP+1,P+1 =

1

aP + ãP
.

Therefore one can have the problem suitable for application of discretization
methods, to find u ∈ H1(Ω) and Φ ∈ VΓE

satisfying

−∆u− k2u = f in Ω,

∂u

∂ν
= 0 on Γc,

∂u

∂ν
e0 = L∇2

yΦ + (k2L−M)Φ on ΓE

(5.2)

with u = φ0 and ∂Φ/∂ν = 0 on ∂ΓE . By introducing the solution space

V = {(u,Φ) ∈ H1(Ω)×VΓE
: u = φ0 on ΓE for Φ = (φ0, . . . , φP+1)}

equipped with the weighted norm depending on the matrix L

‖(u,Φ)‖2V := ‖u‖2H1(Ω) + ‖Φ‖2VΓE
,
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where

‖Φ‖2VΓE
:=

P∑
j=0

1

|aj + ãj |
‖φj + φj+1‖2H1(ΓE) (5.3)

we can rewrite the problem (5.2) as a variational problem to seek for (u,Φ) ∈ V
satisfying

(∇u,∇v)Ω − k2(u, v)Ω + (L∇yΦ,∇yΨ)ΓE
+ ((−k2L+M)Φ,Ψ)ΓE

= 〈f, v〉1,Ω
(5.4)

for all (v,Ψ) ∈ V.
The equivalence of two problems (2.17) and (5.2) is established in the fol-

lowing theorem.

Theorem 5.1. If (u,Φ) ∈ V is a solution to the problem (5.2), then u is a
solution to the problem (2.17). Conversely, if u ∈ H1(Ω) is a solution to the
problem (2.17), then there exists Φ ∈ V ΓE

such that (u,Φ) is a solution in V
to the problem (5.2). In addition, the auxiliary variables Φ to the problem (5.2)
satisfy √

µ̂min‖Φ‖V ΓE
≤ C
√
P + 1‖f‖H−1(Ω), (5.5)

where µ̂min := min{|µn| : µn 6= 0} is the smallest non-zero axial frequency.

To prove Theorem 5.1, we first show the n-th mode of the solution to the
problem (5.2) satisfies the same DtN boundary condition as (2.19). To do this,
we examine the auxiliary variables solving the problem on ΓE

−L∇2
yΦ + (−k2L+M)Φ = Ejej in ΓE ,

∂Φ

∂ν
= 0 on ∂ΓE

(5.6)

for Ej ∈ H−1(ΓE) with 0 ≤ j ≤ P + 1. Although it is enough to study
the problem (5.6) with j = 0, we examine the general problem for the unique
solvability of the problem (5.6).

It is clear that the n-th Fourier coefficients Φn of Φ satisfy the equation

(−µ2
nL+M)Φn = Enj ej , (5.7)

where Enj is the n-th Fourier coefficient of Ej . We shall establish the invertibility
of the system matrix of (5.7) for n 6= N and derive the solution formulas in the
following lemma.

Lemma 5.2. Let n 6= N , i.e., µn 6= 0. Then −µ2
nL + M is invertible and a

solution Φn ∈ CP+2 to the linear system (5.7) is given by the formula φn` =
sn`,jE

n
j , where

sn`,j =


(1 + Zn0,`−1)Rn`,j−1(1 + Znj,P )

−2iµn(1− Zn0,P )
if ` ≤ j,

(1 + Zn0,j−1)Qnj,`−1(1 + Zn`,P )

−2iµn(1− Zn0,P )
if ` ≥ j.

(5.8)
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Proof. Once we show that the problem (5.7) for each j = 0, 1, . . . , P + 1 has a
solution, the invertibility of the matrix −µ2

nL+M immediately follows.
We first assume that ãj 6= −iµn for j = 0, 1, . . . , P . In case that 0 < j <

P + 1, we will find the solution Φn of the form

φn` =

{
Qn0,`−1Ãn + (Rn0,`−1)−1B̃n for ` = 0, 1, . . . , j,

Qnj,`−1C̃n + (Rnj,`−1)−1D̃n for ` = j, j + 1, . . . , P + 1.
(5.9)

When j = 0 or P + 1, we will find solution φn` defined by the upper formula
with ` = 0, 1, . . . , P + 1. Here we will verify the formulas for 0 < j < P + 1, as
the other cases can be treated in the same way with only small modifications.

By the definition of Qnj,m and Rnj,m one can easily show that the three term
recursions

(−µ2
nL`,`−1 +M`,`−1)φn`−1 +(−µ2

nL`,`+M`,`)φ
n
` +(−µ2

nL`,`+1 +M`,`+1)φn`+1 = 0

hold for ` 6= 0, j, P + 1. Thus, the four unknowns Ãn, B̃n, C̃n and D̃n are to be
determined by

− iµn(Ãn − B̃n) = 0 (5.10)

from the 0-th equation,

Qn0,j−1Ãn + (Rn0,j−1)−1B̃n = C̃n + D̃n (5.11)

from the definition of φn` with ` = j,

(Qn0,j−1Ãn − (Rn0,j−1)−1B̃n)− (C̃n − D̃n) =
1

iµn
Enj (5.12)

from the j-th equation and

Qnj,P C̃n − (Rnj,P )−1D̃n = 0 (5.13)

from the (P + 1)-th equation. Solving the equations (5.10)-(5.13) leads to

Ãn = B̃n =
(1 + Znj,P )Rn0,j−1

−2iµn(1− Zn0,P )
Enj ,

C̃n =
(1 + Zn0,j−1)

−2iµn(1− Zn0,P )
Enj , D̃n =

(1 + Zn0,j−1)Znj,P
−2iµn(1− Zn0,P )

Enj ,

and hence the formula (5.8) is obtained. When there exists an index J such that

ãJ + iµn = 0, it is straightforward to show directly that Φn = Enj
∑P
`=0 s

n
`,je`

still solves the problem (5.7), which completes the proof.

The next lemma is required to analyze cutoff modes associated with µN = 0.

Lemma 5.3. e0 is not in the range of M , that is, MΦN = e0 does not have a
solution.
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Proof. We conduct backward Gaussian elimination to reduce the tridiagonal
matrix M to the lower triangular matrix. It turns out that the reduced lower
triangular matrix has zero at the (0, 0)-entry and hence the problem MΦN = e0

does not admit a solution, which completes the proof.

For the estimate (5.5) of the auxiliary variables solving the problem (5.2) we
need following lemmas.

Lemma 5.4. Assume that aj and ãj are the solution parameters defined by
(2.26) for the min-max problems (2.22) and (2.23), and np and ne grow at the
rate of (3.1)-(3.3). For each m let Cm = max{|ãj/aj |}m−1

j=0 > 1, where m = np
or m = ne. Then Cm → 1 as m→∞.

Proof. It suffices to work with sj of (2.25). Let ∆ = K(γ̃)/m and uj = (1 −
(2j + 1)/2m)K(γ̃). Here we observe that ∆ → 0 as m → ∞. Indeed, in case
that γ = γp, m = np the convergence of ∆ is an obvious result from the fact
that K(γ̃p) is constant. On the other hand, if γ = γe, m = ne, then we use
(3.6), (3.1)-(3.3) to show that

K(γ̃)

m
� ln(1/γe)

ln(1/ε) · ln ln(1/ε)
� ln ln(1/ε)

ln(1/ε) · ln ln(1/ε)
→ 0

as ne →∞.
Now by the mean value theorem, we have

sj+1

sj
=

dn(uj −∆, γ̃)

dn(uj , γ̃)
= 1 +

γ̃sn(u∗j , γ̃)cn(u∗j , γ̃)

dn(uj , γ̃)
∆

for some u∗j between uj and uj+1. By using cn(u∗j , γ̃) ≤ dn(u∗j , γ̃) ≤ dn(uj+1, γ̃)
and 0 < γ̃sn(u∗j , γ̃) < 1, we have

sj+1

sj
< 1 + ∆

sj+1

sj

or equivalently, (1−∆)sj+1/sj < 1. Since that ∆→ 0 as m→∞, we see that
Cm < (1−∆)−1 for sufficiently large m and hence Cm → 1 as m→∞.

Lemma 5.5. Under the same assumptions as those in Lemma 5.4, it holds that

|Qn0,`| < 1 (5.14)

for n 6= N and for 0 ≤ ` ≤ P . In addition, there exists a positive constant C
independent of np, ne and CRBC parameters such that

|1 +Qnj,j |√
|aj + ãj |

≤ C√
|µn|

,
|1 +Rnj,j |√
|aj + ãj |

≤ C√
|µn|

. (5.15)

Proof. The condition |aj | < |ãj | in (2.10) leads to |aj + iµn|/|ãj − iµn| < 1 and
it then follows that |Qn0,`| < 1.
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For (5.15) we first observe
√
|ãjµn|/|ãj − iµn| ≤ 1 by the arithmetic-geometric

mean inequality. Utilizing the inequality and |aj | < |ãj | leads to

|1 +Qnj,j |√
|aj + ãj |

=
1√

|aj + ãj |
|aj + ãj |
|ãj − iµn|

=

√
|ãjµn|

|ãj − iµn|

√
|aj + ãj |√
|ãj |

1√
|µn|

≤ C√
|µn|

,

(5.16)

which proves the first inequality of (5.15). The second inequality of (5.15) can
be established in the same way but with |ãj | ≤ C|aj | from Lemma 5.4 instead
of |aj | < |ãj |. Here the constant C is taken to be the maximum of Cm, which
is available since Cm converges to 1+.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Assume that (u,Φ) ∈ V is a solution to the problem
(5.2). Lemma 5.3 asserts that there is no contribution of cutoff modes to the
Neumann data of u, i.e.,

∂uN
∂ν

= 0 on ΓE .

For non-cutoff modes, the solution formula (5.8) with ` = j = 0 and un = φn0
shows that

∂un
∂ν

=
−1

sn0,0
un = iµn

1− Zn0,P
1 + Zn0,P

un. (5.17)

As a consequence, all modes of the solution u satisfy the condition (2.19) and
hence u solves the problem (2.17).

Conversely, assume that u ∈ H1(Ω) is a solution to the problem (2.17) and
consider the problem (5.7) with En0 = −∂un/∂ν. When n 6= N , the solution
formula (5.8) shows that

φn` =
Qn0,`−1(1 + Zn`,P )

iµn(1− Zn0,P )

∂un
∂ν

for ` = 0, 1, . . . , P + 1. (5.18)

By comparing (5.18) of ` = 0 with (5.17) we can show that φn0 = un. Further-
more, eliminating ∂un/∂ν from (5.18) yields that

φn` =
Qn0,`−1(1− Zn`,P )

(1 + Zn0,P )
φn0 for ` = 0, 1, . . . , P + 1.

Now, for the estimate (5.5) of Φ, we use Lemma 3.3 and (5.14) of Lemma 5.5
to obtain, for n 6= N ,

|φn` + φn`+1| =

∣∣∣∣∣Qn0,`−1(1 +Qn`,`) +Qn0,`Z
n
`+1,P (1 +Rn`,`)

1 + Zn0,P

∣∣∣∣∣ |φn0 |
≤ C(|1 +Qn`,`|+ |1 +Rn`,`|)|φn0 |

(5.19)

28



for ` = 0, . . . , P and hence by (5.15) of Lemma 5.5

1√
|a` + ã`|

|φn` + φn`+1| ≤
C√
|µn|
|φn0 |. (5.20)

For n = N , there exists a unique solution to the problem MΦN = 0 with
φN0 = uN , that is,

φN` =

`−1∏
j=0

aj
ãj

φN0 .

Therefore, we have

|φN` + φN`+1| =

`−1∏
j=0

∣∣∣∣ajãj
∣∣∣∣
 |a` + ã`|

|ã`|
|φN0 |

for ` = 0, . . . , P and so by using the inequalities√
|a` + ã`|
|ã`|

≤ C√
µ̂min

and

`−1∏
j=0

∣∣∣∣ajãj
∣∣∣∣ ≤ 1,

we are led to

1√
|a` + ã`|

|φN` + φN`+1| =
√
|a` + ã`|
|ã`|

`−1∏
j=0

∣∣∣∣ajãj
∣∣∣∣
 |φN0 | ≤ C√

µ̂min
|φN0 |. (5.21)

Noting that
(1 + λ2

n)1/2

|µn|
≤ C

µ̂min
, (5.22)

we combine (5.20) and (5.21) to obtain

(λ2
n + 1)‖Φn‖2L ≤ C

(P + 1)

µ̂min
(λ2
n + 1)1/2|φn0 |2 (5.23)

for n ≥ 0, which results in the desired inequality (5.5)√
µ̂min‖Φ‖VΓE

≤ C
√
P + 1‖φ0‖H1/2(ΓE) ≤ C

√
P + 1‖f‖H−1(Ω)

and the proof is completed.

Remark 5.6. Since |Qn0,P | ≈ 1 for large n in (5.19), the dependence of the sta-
bility constant in (5.5) on P may arise for such large n. However for relatively
small n (such as all propagating modes and relatively slowly decaying evanescent
modes) such that

|Qnj,j | < c < 1 for all 0 ≤ j ≤ P (5.24)
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n
k = 10 k = 16

µn |eiµnδ| µn |eiµnδ|
0 10 1 16 1
1 9.4937 1 15.6885 1
2 7.7795 1 14.7147 1
3 3.3426 1 12.9296 1
4 7.6101i 3.2564e-02 9.9038 1
5 12.1136i 4.2914e-03 3.0430 1
6 15.9783i 7.5391e-04 9.9652i 1.1284e-02
7 19.5860i 1.4868e-04 15.0867i 1.1260e-03
8 23.0576i 3.1173e-05 19.3818i 1.6299e-04
9 26.4469i 6.7829e-06 23.3118i 2.7805e-05
10 29.7819i 1.5123e-06 27.0363i 5.2027e-06
11 33.0790i 3.4299e-07 30.6304i 1.0323e-06
12 36.3486i 7.8758e-08 34.1354i 2.1322e-07
13 39.5975i 1.8254e-08 37.5761i 4.5332e-08
14 42.8304i 4.2613e-09 40.9688i 9.8483e-09
...

...
...

Table 3: Magnitude of eiµnδ.

with some positive constant c < 1 and hence |Qn0,`−1| < c`, we see that (5.20) is
bounded by a geometric sequence

1√
|a` + ã`|

|φ` + φ`+1| < c`
C√
|µn|
|φn0 |

It implies that the norm estimate (5.23) is derived without the dependence on
P . Thus if the solution consists of modes with small n satisfying (5.24), then
the dependence of the stability constant in (5.5) on P is not involved.

6. Numerical examples

This section is devoted to presenting numerical experiments validating the
convergence theory for CRBC approximate solutions. In the first example, we
show that CRBC can provide the exact radiation condition for important modes.
To this end, we choose a semi-infinite straight waveguide with a rectangular
obstacle for Ω∞ = ((0,∞)× (0, 1))\ Ω̄1 with Ω1 = (0.01, 0.5)× (0.01, 0.99). The
unbounded domain is truncated at x = 1 and the computation domain Ω is set
to be Ω = (0, 1)2 \ Ω̄1. For k = 10 and 16 the wave source f is given in a way
that the exact solution uex is defined by

uex(x, y) = χ(x)

5L−1∑
n=0

1

L
eiµn(x−0.55) cos(nπy),
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Figure 4: Relative errors of finite element approximations for k = 10 and k = 16.

where L = bk/πc and χ is a smooth cutoff function of x such that ‖χ‖∞ = 1,
χ(x) = 0 for x < 0.55 and χ(x) = 1 for x > 0.9. When k = 10, we have L = 3
and there are 4 propagating modes and 11 evanescent modes in the solution and
in case of k = 16, L = 5 and the solution is a superposition of 6 propagating
modes and 19 evanescent modes. The magnitude of eiµnδ for each mode is
given in Table 3 with the separation δ = 0.45 between the artificial boundary
and the wave source of evanescent modes. We determine ne = 4 and choose
parameters aj and ãj to be the values of −iµn in the gray cells in the table
since the reflection errors of remaining evanescent modes are bounded by

|eiµ12δ| ≈ 7.87581× 10−8 for k = 10,

|eiµ14δ| ≈ 9.84837× 10−9 for k = 16,

which are small enough for finite element approximations. The CRBC with
(np, ne) = (2, 4) for k = 10 and (np, ne) = (3, 4) for k = 16, whose imaginary
parameters are equal to the axial frequencies of all propagating modes and
real parameters coincide with the decay rates of the first 8 evanescent modes,
serves as the exact radiation condition for those modes. We compute bilinear
finite element approximate solutions with mesh h = 1/100, 1/200, 1/400, 1/800
and 1/1600 by using the finite element library deal.II [3]. As seen in Figure 4,
finite element approximations converge at the quasi-optimal rate since reflection
errors are less than 10−7. The snapshots of real and imaginary parts of the exact
solution and the approximate solution satisfying CRBC obtained by the finite
element method with h = 1/400 are presented in Figure 5, showing that the
approximate solution is not visually distinguishable from the exact one.

In many applications, we do not need to choose many parameters to make
CRBC an exact radiation condition for all important modes but instead it is
enough to reduce reflection errors below finite element errors by using CRBC
with a smaller number of optimal parameters. To demonstrate the effect of
optimally chosen parameters, we consider a problem for k = 10π posed on the
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(a) Real part of the exact solution (b) Real part of the CRBC solution

(c) Imaginary part of the exact solution (d) Imaginary part of the CRBC solution

Figure 5: Snapshots of the real and imaginary parts of the exact solution and the finite element
solution satisfying CRBC for k = 16 and h = 1/400.
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Figure 6: Relative errors of finite element approximations satisfying CRBC for h =
1/100, 1/200, 1/400, 1/800, 1/1600 and 1/3200 when k = 10π.

computational domain Ω = (0, 0.05) × (0, 1) with ΓE = {0.05} × (0, 1). Here
a Dirichlet condition is imposed on {0} × (0, 1) so that the exact solution is
defined by

uex(x, y) =

2L−1∑
n=0

1

L
eiµnx cos(nπy)

with L = k/π. Since the exact solution in this example includes a cutoff mode,
it will also validate the effective performance of CRBC for cutoff modes.

It turns out that CRBC with np = 2 and np = 3 can reduce the reflection
errors of 10 propagating modes up to 2.19494×10−4 and 2.29942×10−6, respec-
tively. As indicated by the reflection errors, Figure 6 shows that finite element
approximations of CRBC with np = 2 converge at the quasi-optimal rate until
the errors reach the level of the reflection error and those with np = 3 do not
suffer from interruption of reflection error. In addition, since CRBC with the
Neumann terminal condition provides the exact radiation condition for cutoff
modes, we do not have any trouble to approximate solutions including a cutoff
mode as seen in this experiment. In comparison to this result, it is shown in
[17] that CRBC terminated with a Dirichlet condition gives the reflection error
of cutoff modes proportional toδ +

P∑
j=0

1

aj + ãj

−1

and hence it is required to employ small parameters to achieve a desirable ac-
curacy, which in turn needs small finite element meshes.

In the next example, we consider the problem for k = 10π + 10−6, where
a near-cutoff mode of axial frequency µN ≈ 0.0079 with N = 10 is involved.
In this case we choose a0 and ã0 to be −iµN for removing the reflection of the
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Figure 7: Relative errors of finite element approximations satisfying the CRBC for h =
1/100, 1/200, 1/400, 1/800, 1/1600 and 1/3200 when k = 10π + 10−6.

np ρp ne e−µ̃N+1δρe

2 2.09e-02 2 1.53e-03
3 2.19e-04 4 3.38e-05
4 2.30e-06 6 9.48e-07
5 2.41e-08 9 3.67e-09
6 2.52e-10 11 1.54e-10

(a) µmin = µN−1 ≈ 13.6939

np ρp ne e−µ̃N+1δρe

2 2.60e-01 1 5.90e-03
3 9.36e-02 1 2.04e-02
4 3.37e-02 1 3.33e-02
5 1.22e-02 2 2.01e-03
6 4.38e-03 2 2.94e-03
7 1.58e-03 3 2.47e-04
8 5.69e-04 3 3.43e-04
9 2.05e-04 4 3.45e-05
10 7.40e-05 4 4.63e-05

(b) µmin = µN ≈ 0.0079

Table 4: Reflection errors of CRBC when k = 10π + 10−6, δ = 0.05 and µ̃min = µ̃N+1 ≈
14.3966.

near-cutoff mode and use µN−1 for the lower bound of the min-max problem
(2.22). The reason why we set two values a0 and ã0 to be equal is that otherwise
the ratio ã0/a0 would be so big, for example ã0/a0 > µN−1/µN ≈ 1.72× 103 as
µN−1 ≈ 13.69, that the bound of the second estimate of (5.15) would become
large and render the stability constant of the auxiliary variables in (5.5) worse,
which consequently would result in slow convergence. The resulting reflection
errors of CRBC with −iµN as a parameter for each np are reported in Table 4a.
When they are compared with the results given in Table 4b with µN used
for the lower bound of the min-max problem 2.22, the former is apparently
much smaller than the latter for each np. Figure 7 demonstrates the quasi-
optimal convergence of finite element approximations until finite element errors
are dominant.

34



7. Acknowledgment

This research of the author was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF-2018R1D1A1B07047416)
funded by the Ministry of Education, Science and Technology.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with
formulas, graphs, and mathematical tables, vol. 55, Dover, New York, 1964.

[2] N. I. Akhiezer, Elements of the theory of elliptic functions, American Math-
ematical Society, Providence, RI, 1990.

[3] W. Bangerth, R. Hartmann, G. Kanschat, deal.II—a general-purpose
object-oriented finite element library, ACM Trans. Math. Software 33 (4)
(2007) 24.
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[14] P. Exner, P. Šeba, M. Tater, D. Vaněk, Bound states and scattering in quan-
tum waveguides coupled laterally through a boundary window, J. Math.
Phys. 37 (10) (1996) 4867–4887.

[15] P. Exner, S. A. Vugalter, Bound states in a locally deformed waveguide:
the critical case, Lett. Math. Phys. 39 (1) (1997) 59–68.

[16] C. I. Goldstein, A finite element method for solving Helmholtz type equa-
tions in waveguides and other unbounded domains, Math. Comp. 39 (160)
(1982) 309–324.

[17] T. Hagstrom, S. Kim, Complete radiation boundary conditions for the
Helmholtz equation I: waveguides, Numer. Math. 141 (4) (2019) 917–966.

[18] I. Harari, I. Patlashenko, D. Givoli, Dirichlet-to-Neumann maps for un-
bounded wave guides, J. Comput. Phys. 143 (1) (1998) 200–223.

[19] R. L. Higdon, Absorbing boundary conditions for difference approximations
to the multidimensional wave equation, Math. Comp. 47 (176) (1986) 437–
459.

[20] R. L. Higdon, Numerical absorbing boundary conditions for the wave equa-
tion, Math. Comp. 49 (179) (1987) 65–90.

[21] D. Ingerman, V. Druskin, L. Knizherman, Optimal finite difference grids
and rational approximations of the square root. I. Elliptic functions, Comm.
Pure and Appl. Math. 53 (2000) 1039–1066.

[22] D. S. Jones, The eigenvalues of∇2u+λu = 0 when the boundary conditions
are given on semi-infinite domains, Proc. Cambridge Philos. Soc. 49 (1953)
668–684.

[23] S. Kim, Analysis of the convected Helmholtz equation with a uniform mean
flow in a waveguide with complete radiation boundary conditions, J. Math.
Anal. Appl. 410 (1) (2014) 275–291.

[24] S. Kim, Error analysis of PML-FEM approximations for the Helmholtz
equation in waveguides, ESAIM Math. Model. Numer. Anal. 53 (4) (2019)
1191–1222.
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