
Numerische Mathematik manuscript No.
(will be inserted by the editor)

Complete radiation boundary conditions for the

Helmholtz equation I: Waveguides

Thomas Hagstrom · Seungil Kim

the date of receipt and acceptance should be inserted later

Abstract We consider the use of complete radiation boundary conditions
for the solution of the Helmholtz equation in waveguides. A general analysis
of well-posedness, convergence, and finite element approximation is given. In
addition, methods for the optimization of the boundary condition parameters
are considered. The theoretical results are illustrated by some simple numerical
experiments.
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1 Introduction

In this paper, we shall study time-harmonic wave propagation problems in un-
bounded waveguides. Waveguides are an important technology with a variety
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of applications in acoustics, optical communications and so on. Many appli-
cations of waveguides are found to be posed in large, effectively unbounded,
domains. A challenge for the numerical solution of wave propagation problems
posed in large domains is the construction and application of domain trun-
cation techniques with high accuracy. The boundary conditions imposed on
the artificial boundaries resulting from domain truncation, so-called absorbing
boundary conditions (ABCs), should have the following properties

– the artificial boundary produces as little reflection as we wish and so the
solution on the truncated domain can be made arbitrarily close to the
solution on the original unbounded domain,

– the artificial boundary conditions are easy to implement in the discretized
problems using, e.g., finite elements method (FEM) or finite difference
method (FDM),

– the numerical methods incorporated with the artificial boundary conditions
are stable and robust.

Many ABCs satisfying the properties listed above have been developed, for
example, nonlocal boundary conditions based on Dirichlet-to-Neumann (DtN)
mappings [3,13,19], high-order local boundary conditions [24,26,27,31], and
perfectly matched layers (PMLs) [2,29]. We note that the design of efficient
ABCs is also important for scattering problems in exterior domains, which we
will consider in a subsequent paper. For general reviews of this subject, see [4,
9,15,25,35].

This paper is devoted to developing local high-order absorbing boundary
conditions for time-harmonic wave propagation problems in waveguides moti-
vated by complete radiation boundary conditions (CRBCs) for wave propaga-
tion problems in the time-domain [17,18]. For time-domain calculations, CR-
BCs exploit the auxiliary function formulation proposed in [17], which leads
to a more efficient and natural implementation of high order radiation condi-
tions than those proposed by Higdon [20,21] and by Givoli and Neta [11]. In
addition, it is shown in [17] how optimal parameters can be chosen based on
the simulation time, T , the separation, b, of sources and inhomogeneities from
the artificial boundary, and the error tolerance, τ . The parameterizations are
quite efficient, with the total number of auxiliary functions, P , obeying

P ∝ ln

(
1

τ

)
· ln
(
cT

b

)
, (1.1)

with a positive constant c.
The new method that we shall investigate not only fulfills the necessary

requirements for ABCs but also has certain advantages. First of all, compared
with methods based on DtN mappings [3,13,19], CRBCs do not need the
knowledge of eigenfunctions of the transverse Laplace operator on the cross-
section of waveguides and the number of propagating modes, though easily-
obtained partial information on the distribution of the eigenvalues can be used
to improve efficiency.
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In addition, as CRBCs are local, the sparsity of the system matrix is re-
tained. In contrast with earlier local boundary condition sequences or PML,
CRBCs are constructed to treat evanescent modes as well as propagating
modes. Thus they can be placed quite close to wave sources or scatterers
without compromising accuracy. This fact will be illustrated in the numeri-
cal examples later. Here we note that to handle evanescent modes the PML
width needs to be inversely proportional to the smallest decay rate of evan-
scent modes so that it can be arbitrarily wide, whereas in such a case we
can use suitably chosen nodes, e.g., Newman nodes, and guarantee accuracy
independent of how small the smallest decay rate is.

Via the introduction of auxiliary variables, CRBCs, as well as some of the
other methods mentioned above, avoid the higher order derivatives involved
in product boundary operators of Higdon. Hence, these boundary conditions
are compatible with FEM. The literature [10,12,16,31] shows many compu-
tational results of these ABCs for wave propagation problems in time- and
frequency- domains incorporated with FEM. However, the analysis for finite
element problems, e.g., well-posedness and quasi-optimal convergence, has not
been available in any case. In the present paper, we will provide an improved
analysis for the finite element application to time-harmonic wave propagation
problems with CRBCs in waveguides. In general, the unique solvability and
quasi-optimal convergence of finite element approximations to solutions of in-
definite problems satisfying a G̊arding type inequality and the regularity of
the adjoint problem is obtained by an argument of Schatz [33]. Schatz’s ar-
gument requires that the regularity of the continuous variational problem be
established and that the mesh size h be small enough. That is, 0 < h < h0,
where h0 depends on the regularity constant of the elliptic problem. In CRBC
applications, it turns out that the regularity constant may increase polynomi-
ally as P grows (a PML application has the similar result that the stability
constant depends on the width of the layer polynomially [5]), which means
that for large P a smaller mesh h may be required to retain the unique solv-
ability and quasi-optimal convergence. As the error due to the approximate
boundary condition typically converges exponentially with increasing order,
this possible restriction on the mesh is not likely to be important. We note
that in our numerical simulations no dependence on P of the mesh size for
the solvability of the discretized problem or the quasi-optimality of the finite
element approximations was observed.

This paper is organized as follows. In Section 2 we study analytic solutions
of a time-harmonic waveguide model. We define the CRBCs for wave propa-
gation problems in the frequency-domain in Section 3. Section 4 is devoted to
reformulation of the model problem to a variational form and in Section 5 exis-
tence and uniqueness of solutions to the Helmholtz equation satisfying CRBCs
is established. Section 6 includes the convergence analysis of the continuous
problem and parameter optimization is discussed in Section 7. We analyze the
stability and regularity of the variational problem in Section 8 and discuss the
finite element analysis in Section 9. Finally, in Section 10 numerical examples
that confirm the theories are presented. Note that we cannot directly use the
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Fig. 1 Geometry of the semi-infinite waveguide Ω∞ in R2, Γ̃T = Γ̃N ∪ Γ̃S .

time-domain analysis in the frequency domain, as in the time domain we use
the finite simulation time, T , in an essential way. As a result the parameter
optimization problem considered here is different and, in fact, more difficult.

2 Fourier series of solutions to the Helmholtz equation in
waveguides

We consider a time-harmonic waveguide problem

∆u+ k2u = 0 in Ω∞ (2.1)

on a semi-infinite waveguide Ω∞ = {(x, y) ∈ R × Rd−1 : x > 0, y ∈ Θ},
d = 2 or 3. Here Θ is a bounded subset of Rd−1 with a smooth boundary.
(For the numerical experiments we will specialize to R

2 with Θ = (0,W ). See
Figure 1.) Here k is a positive wavenumber. For definiteness we assume the
lateral waveguide boundary is sound-hard, i.e., the normal flux is equal to zero,

∂u

∂ν
= 0 on Γ̃T ≡ (0,∞)× ∂Θ, (2.2)

where ν is the outward unit normal vector on Γ̃T . In addition, we assume that
wave sources come from the west boundary ΓW of Ω∞ located at x = 0 and
so it determines the boundary data on ΓW ,

u = f on ΓW . (2.3)

This models the practically important case where more complicated physics,
geometry, or distributed sources are located in the region x < 0.

Solutions of the Helmholtz equation (2.1) can be expressed in a Fourier
series in terms of the eigenfunctions of the negative transverse Laplace operator

∆yYn + λ2nYn = 0 in Θ,

∂Yn
∂ν

= 0 on ∂Θ,
(2.4)
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where λ2n and Yn are the n-th eigenpair. We denote µ2
n = k2−λ2n. By choosing

normalized eigenfunctions, we have an orthonormal basis consisting of eigen-
functions Yn. Moreover, as

lim
n→∞

µ2
n = −∞, (2.5)

there are only finitely many µ2
n > 0, infinitely many µ2

n < 0 and there may
be cutoff modes µ2

n = 0. We also note that the asymptotic behavior of the
eigenvalues is well-known (e.g. [6, Ch. VI, Thm. 20-21]): for some constant A

µ2
n ∼ −An 2

d−1 . (2.6)

Now, under the time-harmonic assumption e−iωt with angular frequency ω,
for each µn, we only take solutions that propagate to the right or are bounded
for x > 0,

zn(x) = eiµnx.

This represents a propagating mode for µ2
n > 0 with µn > 0 and an evanescent

mode for µ2
n < 0 with µ̃n := ℑ(µn) > 0. In some cases, there is a mode, a

so-called cutoff mode, associated with µn = 0, for which special care needs to
be taken. For ease of exposition we now assume that there exists N ≥ 0 such
that µN = 0, µ2

n > 0 for all n < N and µ2
n < 0 for all n > N . However, we will

make clear when the absence of such a mode yields substantial improvements
in the error and stability estimates. Note that extensions to the case of multiple
cutoff modes could similarly be obtained.

Thus, a general solution to the Helmholtz equation satisfying the outgoing
radiation condition is represented by the Fourier series

u(x, y) =
∞∑

n=0

Ane
iµnxYn(y)

=

N∑

n=0

Ane
iµnxYn(y) +

∞∑

n=N+1

Ane
−µ̃nxYn(y),

(2.7)

which is a superposition of finitely many propagating modes (including a cutoff
mode) and infinitely many evanescent modes. Here the Fourier coefficient An

is determined by the sources from ΓW ,

An =

∫

Θ

u(0, y)Yn(y) dy.

The constant C throughout the paper is a generic constant and may be
different at different places, but it does not depend on functions. Where the
dependence of constants on the parameters of the approximate radiation con-
dition are important we will indicate the dependence via a subscript, Ca. We
remark that the construction and analysis can easily be extended to prob-
lems with variable coefficients depending only on the transverse coordinates,
y, including the important case of layered materials. Also, the theory can be
established for a case where the domain Ω∞ includes any bounded smooth
cavity with any inhomogeniety in x < 0, and the analysis for this case can be
found in [23].
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Fig. 2 Geometry of the truncated computational domain Ωb, ΓT = ΓN ∪ ΓS .

3 Complete Radiation Boundary Conditions

Complete radiation boundary conditions were introduced in [17,18] to pro-
vide a rapidly convergent local boundary condition sequence for time-domain
calculations. Fundamental differences between the time-domain and frequency-
domain cases are:

i In the frequency domain only a discrete set of modes exists, while in the
time domain we must consider the continuum of modes present as k varies
along an entire inversion contour;

ii In the time domain we are only concerned about accuracy up to the simula-
tion time, T , which allows for the continuation of k in the complex plane.
In the frequency domain this would be akin to solving a limiting absorption
approximation to the Helmholtz system, and thus the size of the imaginary
part would be tied to the accuracy.

Directly, the conditions proposed in the time domain can be simply translated
to the frequency domain by the replacement c−1 ∂

∂t → −ik, where c is the wave
speed. However, both the analysis and parameter optimization differ.

We truncate the unbounded strip Ω∞ to a bounded region Ωb = (0, b)×Θ,
whose east boundary ΓE is located at x = b (see Figure 2). The problem in
the finite computational domain Ωb is

∆u+ k2u = 0 in Ωb, (3.1)

∂u

∂ν
= 0 in ΓT = (0, b)× ∂Θ, (3.2)

u = f on ΓW . (3.3)

To close the problem, we need to supplement it with the CRBC on the east
boundary ΓE . The boundary condition is defined by the following recursive
formulas satisfied by auxiliary variables φj , that also satisfy the Helmholtz
equation (3.1) with the sound-hard boundary condition (3.2) on ΓT :

φ0 = u,

(
∂

∂x
+ aj)φj = (− ∂

∂x
+ aj)φj+1,

(3.4)
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for j = 0, 1, 2, . . ., where aj are parameters to be chosen for reducing reflec-
tion from the artificial boundary. As motivation we note that the recursion
terminates if u is a superposition of modes annihilated by one of the operators
( ∂
∂x + aj). The parameters aj are chosen as follows:

aj =

{
−ikcj for j = 0, . . . , np − 1,
σj−np for j = np, . . . , np + ne

(3.5)

with

0 < cj ≤ 1 for j = 0, . . . , np − 1, and 0 < σj for j = np, . . . , np + ne. (3.6)

In practice, the parameters we take satisfy

µN−1 ≤ kcj ≤ k and µ̃N+1 ≤ σj ≤Mσ, (3.7)

where µN−1 represents the smallest axial frequency of propagating modes and
µ̃N+1 is the smallest decay rate of evanescent modes. Also, Mσ is an upper
bound for the decay rates σj of evanescent modes that the CRBC can damp
effectively and it can be chosen so that e−Mσb is less than an error tolerance
of numerical simulations. These bounds and selection of parameters in prac-
tice will be discussed in more detail in Section 7. We could choose repeated
parameters aj , however from now on we assume that aj are all distinct since
the parameters in the optimal selection are all different. These recursions are
terminated by

φnp+ne+1 = 0 on ΓE . (3.8)

Here (np, ne) is called the order of CRBCs and let P = np + ne. If aj is
selected to be purely imaginary so that kcj = µn > 0, then the recursion
exactly eliminates the corresponding propagating mode, and if aj is chosen to
be real so that σj equals the decay rate µ̃n of an evanescent mode, then it
does not produce reflection of the corresponding evanescent mode.

Remark 3.1 As suggested for time-domain problems in [17], we may also use
parameters aj of the form

aj = σj − ikcj (3.9)

for j = 0, . . . , P with the conditions (3.6). In this case, although the recur-
sions do not annihilate any mode exactly, they damp reflection of propagating
modes and evanescent modes simultaneously. In this paper, however, we only
investigate CRBCs employing aj as given in (3.5), which are generally more
effective for frequency-domain problems.

For numerical implementation of these boundary conditions, we need to
eliminate the derivative of the auxiliary variables with respect to the normal
direction from the recursive formulas (3.4). To do this, we apply the operator
∂/∂x to the equation (3.4) for the (j − 1)-th and j-th recursion, which yields

∂2

∂x2
φj−1 +

∂2

∂x2
φj = aj−1

∂

∂x
φj − aj−1

∂

∂x
φj−1, (3.10)
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and
∂2

∂x2
φj +

∂2

∂x2
φj+1 = aj

∂

∂x
φj+1 − aj

∂

∂x
φj . (3.11)

Here we eliminate ∂φj−1/∂x from (3.10) and ∂φj+1/∂x from (3.11) by using
(3.4) for the (j − 1)-th and j-th recursion, respectively, which shows that

∂2

∂x2
φj−1 +

∂2

∂x2
φj = aj−1

∂

∂x
φj − aj−1(−

∂

∂x
φj + aj−1φj − aj−1φj−1)

= 2aj−1
∂

∂x
φj − a2j−1φj + a2j−1φj−1,

(3.12)
and

∂2

∂x2
φj +

∂2

∂x2
φj+1 = aj(−

∂

∂x
φj + ajφj+1 − ajφj)− aj

∂

∂x
φj

= −2aj
∂

∂x
φj + a2jφj+1 − a2jφj .

(3.13)

Now, multiplying (3.12) by 1/aj−1 and (3.13) by 1/aj and subsequently
adding them together produces

Lj,j−1
∂2

∂x2
φj−1 + Lj,j

∂2

∂x2
φj + Lj,j+1

∂2

∂x2
φj+1

+Mj,j−1φj−1 +Mj,jφj +Mj,j+1φj+1 = 0,
(3.14)

where

Lj,j−1 =
1

aj−1
, Lj,j =

1

aj−1
+

1

aj
, Lj,j+1 =

1

aj
,

Mj,j−1 = −aj−1, Mj,j = aj−1 + aj , Mj,j+1 = −aj .
(3.15)

To find the connection between the solution u(= φ0) and the auxiliary
variables on ΓE , as in the above derivation, we have

∂2

∂x2
φ0 +

∂2

∂x2
φ1 = a0

∂

∂x
φ1 − a0

∂

∂x
φ0

= a0(−
∂

∂x
φ0 + a0φ1 − a0φ0)− a0

∂

∂x
φ0

= −2a0
∂

∂x
φ0 + a20φ1 − a20φ0.

Therefore,

− 2
∂

∂x
φ0 =

1

a0
(
∂2

∂x2
φ0 +

∂2

∂x2
φ1) + a0φ0 − a0φ1. (3.16)

To obtain our final system, with

L0,0 =
1

a0
and M0,0 = a0,
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we define L and M by the (P + 1)× (P + 1) symmetric (but not Hermitian)
tridiagonal matrices whose non-zero elements Li,j andMi,j are given as above,
respectively. We can write the boundary condition in matrix form

−(2
∂u

∂x
)e0 = L

∂2

∂x2
Φ+MΦ,

where ej is the standard (P + 1) × 1 basis vector whose non-zero element is
one at the j-th component and Φ = (φ0, . . . , φP )

t with φ0 = u on ΓE .
Finally, the Helmholtz equation removes all x-derivatives in the equation,

−(2
∂u

∂x
)e0 = −L∆yΦ+ (−k2L+M)Φ.

Thus the model problem completed by the CRBCs on ΓE is to find functions
u defined in Ωb and Φ = (φ0, . . . , φP )

t defined on ΓE with u = φ0 on ΓE such
that

∆u+ k2u = 0 in Ωb, (3.17)

∂u

∂ν
= 0 on ΓT , (3.18)

u = f on ΓW , (3.19)

∂u

∂x
e0 =

−1

2
(−L∆yΦ+ (−k2L+M)Φ) on ΓE (3.20)

with
∂Φ

∂ν
= 0 on ∂ΓE . (3.21)

Remark 3.2 A similar algebraic computation for time-domain problems, in
which the contribution of evanescent modes is not negligible, can be found
in [16]. For time-domain problems the process of removing the ∂/∂x operators
required a seam function to transit from the recursions for propagating modes to
those for evanescent modes, which is not needed in the recursions for frequency-
domain problems as time derivatives are not involved and there is no difference
between recursions for propagating modes and those for evanescent modes.

4 Variational reformulation

In this section, we reformulate the problem (3.17)-(3.21) to a variational form
for a given order (np, ne) of CRBCs with np + ne = P . We begin by defining
the appropriate Sobolev spaces,

H̃1(Ωb) = {ξ ∈ H1(Ωb) : ξ|ΓE ∈ H1(ΓE)},
H̃1

0 (Ωb) = {ξ ∈ H̃1(Ωb) : ξ = 0 on ΓW }.

In the sequel, we will use the notations (·, ·)Ωb
and (·, ·)ΓE for the L2-inner

product on Ωb and ΓE , respectively,
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For the space of auxiliary variables, we first introduce the symmetric pos-
itive definite matrices L and M, which are obtained by replacing aj with |aj |
in L and M , and define

‖Φ‖2L := (LΦ,Φ)ΓE =

P∑

j=0

1

|aj |
‖φj + φj+1‖2L2(ΓE),

‖Φ‖2M := (MΦ,Φ)ΓE =

P∑

j=0

|aj |‖φj − φj+1‖2L2(ΓE)

and for ℓ = 1, 2

‖Φ‖2L,ℓ :=

P∑

j=0

1

|aj |
‖φj + φj+1‖2Hℓ(ΓE), ‖Φ‖2M,ℓ :=

P∑

j=0

|aj|‖φj − φj+1‖2Hℓ(ΓE)

for Φ = (φ0, . . . , φP )
t ∈ (L2(ΓE))

P+1 with φP+1 = 0. We define the Sobolev
space VΓE = (H1(ΓE))

P+1 with the norm

‖Φ‖2VΓE
= ‖Φ‖2L,1 + ‖Φ‖2M,

which is equivalent to the standard product norm of (H1(ΓE))
P+1 but the

constants involved in the equivalence may depend on P . Furthermore, we
introduce fractional Sobolev spaces Hs(ΓE) for −1 ≤ s ≤ 2 characterized by
the norm

‖u‖2Hs(ΓE) =

∞∑

n=0

(λ2n + 1)s|un|2

for u =
∑∞

n=0 unYn.

Remark 4.1 We note that Hs(ΓE) for 3/2 ≤ s ≤ 2 in this paper is different
from a usual fractional Sobolev space. In this case, Hs(ΓE) is the space of
functions which are in a usual fractional Sobolev space obtained by real inter-
polation [H1(ΓE), H

2(ΓE)]s−1 and whose normal derivatives vanish on ∂ΓE.
However Hs(ΓE) for −1 ≤ s < 3/2 is a usual fractional Sobolev space

Hs(ΓE) =





[(H1(ΓE))
∗, L2(ΓE)]s+1, −1 ≤ s ≤ 0,

[L2(ΓE), H
1(ΓE)]s, 0 ≤ s ≤ 1,

[H1(ΓE), H
2(ΓE)]s−1, 1 ≤ s < 3/2

with (H1(ΓE))
∗ the dual space of H1(ΓE).

If we use the same notations ‖ · ‖L and ‖ · ‖M for vectors in CP+1, the
norm in VΓE can be written as

‖Φ‖2VΓE
=

∞∑

n=0

(λ2n + 1)‖Φn‖2L + ‖Φn‖2M

for functions Φ in VΓE with Fourier series Φ =
∑∞

n=0 Φ
nYn.
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The solution space V is defined by

V := {(u, Φ) ∈ H̃1(Ωb)×VΓE : u = φ0 on ΓE for Φ = (φ0, . . . , φP )
t},

which is equipped with the Sobolev norm

‖(u, Φ)‖2
V
= ‖u‖2H1(Ωb)

+ ‖Φ‖2
VΓE

.

We note that since V is closed in H1(Ωb)×(H1(ΓE))
P+1, it is a Hilbert space.

For regularity estimates, more regular spaces V2
ΓE

and V
2 are required, where

V
2
ΓE

is the set (H2(ΓE))
P+1 with the norm

‖Φ‖2
V2

ΓE

:= ‖Φ‖2L,2 + ‖Φ‖2M,1 =

∞∑

n=0

(λ2n + 1)2‖Φn‖2L + (λ2n + 1)‖Φ‖2M

(which is also equivalent to the standard product norm in (H2(ΓE))
P+1) and

V
2 is a subspace of V consisting of (u, Φ) satisfying

‖(u, Φ)‖2
V2 := ‖u‖2H2(Ωb)

+ ‖Φ‖2
V2

ΓE

<∞.

Finally, we introduce the test space V0, the set of functions (ξ, Ψ) ∈
H̃1

0 (Ωb) × VΓE such that ξ = ψ0 on ΓE for Ψ = (ψ0, . . . , ψP )
t. Now, we

take a test function (ξ, Ψ) ∈ V0, multiply (3.17) by 2ξ and (3.20) by 2Ψ , and
integrate them by parts, which transforms the problem (3.17)-(3.21) to the
variational problem of finding (u, Φ) ∈ V with u = f on ΓW such that

A((u, Φ), (ξ, Ψ)) = 0 (4.1)

for all (ξ, Ψ) ∈ V0, where

A((u, Φ), (ξ, Ψ)) = 2(∇u,∇ξ)Ωb
− 2k2(u, ξ)Ωb

+ J(Φ, Ψ), (4.2)

and
J(Φ, Ψ) = (L∇yΦ,∇yΨ)ΓE + ((−k2L+M)Φ, Ψ)ΓE

is the sesquilinear form defined on VΓE ×VΓE . Also, we define

Ã((u, Φ), (ξ, Ψ)) = 2(∇u,∇ξ)Ωb
+ 2(u, ξ)Ωb

+ J̃(Φ, Ψ)

and
J̃(Φ, Ψ) = (L∇yΦ,∇yΨ)ΓE + (LΦ, Ψ)ΓE + (M̄Φ, Ψ)ΓE ,

where M̄ is the (P + 1) × (P + 1) tridiagonal symmetric matrix whose com-
ponents are the complex conjugate of those of M .

Lemma 4.2 For Φ, Ψ in (L2(ΓE))
P+1, it holds that

|(LΦ, Ψ)ΓE | ≤ ‖Φ‖L‖Ψ‖L,
|(MΦ,Ψ)ΓE | ≤ ‖Φ‖M‖Ψ‖M,

|(M̄Φ, Ψ)ΓE | ≤ ‖Φ‖M‖Ψ‖M.
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Proof Noting the symmetry of the matrix L, application of the Cauchy-Schwarz
inequality shows that

|(LΦ, Ψ)ΓE | =

∣∣∣∣∣∣

P∑

j=0

1

aj
(φj + φj+1, ψj + ψj+1)ΓE

∣∣∣∣∣∣
≤ ‖Φ‖L‖Ψ‖L (4.3)

The other cases are proved similarly. ⊓⊔

The boundedness of J and J̃ is easily obtained from Lemma 4.2.

Lemma 4.3 For Φ, Ψ ∈ VΓE , it holds that

|J(Φ, Ψ)| ≤ C‖Φ‖VΓE
‖Ψ‖VΓE

,

|J̃(Φ, Ψ)| ≤ C‖Φ‖VΓE
‖Ψ‖VΓE

with a positive constant C depending only on k.

The following boundedness and coercivity of the sesquilinear form Ã(·, ·)
will play an important role for the existence of solutions in the next section.

Lemma 4.4 It holds that

|Ã((u, Φ), (ξ, Ψ))| ≤ C‖(u, Φ)‖V‖(ξ, Ψ)‖V

and

|Ã((u, Φ), (u, Φ))| ≥ C‖(u, Φ)‖2V
for all (u, Φ), (ξ, Ψ) ∈ V.

Proof The boundedness of Ã(·, ·) is an immediate consequence of Lemma 4.3
and the Cauchy-Schwarz inequality. For the coercivity, we first examine the
real and imaginary parts of Ã((u, Φ), (u, Φ)),

ℜ(Ã((u, Φ), (u, Φ)))

= 2‖u‖2H1(Ωb)
+

np+ne∑

j=np

(
1

aj
‖∇y(φj + φj+1)‖2L2(ΓE)

+
1

aj
‖φj + φj+1‖2L2(ΓE) + aj‖φj − φj+1‖2L2(ΓE)

)

(4.4)
and

ℑ(Ã((u, Φ), (u, Φ)))

=

np−1∑

j=0

(
1

|aj |
‖∇y(φj + φj+1)‖2L2(ΓE)

+
1

|aj |
‖φj + φj+1‖2L2(ΓE) + |aj |‖φj − φj+1‖2L2(ΓE)

)
,

(4.5)
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and we obtain that

|Ã((u, Φ), (u, Φ))| ≥ C(ℜ(Ã((u, Φ), (u, Φ))) + ℑ(Ã((u, Φ), (u, Φ))))
= C(‖u‖2H1(Ωb)

+ ‖Φ‖2
VΓE

),

which completes the proof.
⊓⊔

We close this section with a lemma about a property of the norms ‖ · ‖L
and ‖ · ‖M, which will be used for the stability analysis of cutoff modes.

Lemma 4.5 Let aj be the parameters defined by (3.5) satisfying (3.7). It holds
that

‖Φ‖L ≤ Ca(P + 1)‖Φ‖M
for Φ ∈ C

P+1, where Ca is a constant depending on max0≤j≤P {1/|aj|}.

Proof Noting that

P∑

ℓ=0

|φℓ + φℓ+1|2 ≤ C(P + 1)2
P∑

ℓ=0

|φℓ − φℓ+1|2

for Φ = (φ0, . . . , φP )
t ∈ CP+1 with φP+1 = 0 (see e.g., [34]), it can be proved

that

‖Φ‖2L =

P∑

ℓ=0

1

|aℓ|
|φℓ + φℓ+1|2 ≤ Ca

P∑

ℓ=0

|φℓ + φℓ+1|2

≤ Ca(P + 1)2
P∑

ℓ=0

|φℓ − φℓ+1|2 ≤ C2
a(P + 1)2‖Φ‖2M.

⊓⊔

5 Existence and uniqueness of solutions to the Helmholtz equation
with the CRBCs

This section is devoted to establishing the existence and uniqueness of solu-
tions to the problem (3.17)-(3.21). For establishing the uniqueness of solutions,
assume that f = 0 on ΓW and let the solution u be represented by the Fourier
series

u(x, y) = (AN +BNx)YN (y) +
∑

n6=N

(Ane
iµnx +Bne

−iµnx)Yn(y). (5.1)

The boundary condition on ΓW implies

An = 0 for n = N, (5.2)

An +Bn = 0 for n 6= N. (5.3)
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Let C0
n and D0

n be the Fourier coefficients of the trace of u and ∂u/∂x on
ΓE , respectively,

C0
n =

{
Bnb for n = N,
Ane

iµnb + Bne
−iµnb for n 6= N,

D0
n =

{
Bn for n = N,
iµn(Ane

iµnb −Bne
−iµnb) for n 6= N.

(5.4)

The auxiliary variable φj on ΓE has the Fourier expansion

φj(y) =

∞∑

n=0

Cj
nYn(y).

Now we note that the vector Cn = (C0
n, . . . , C

P
n )t consisting of the n-th

Fourier coefficients of the auxiliary variables satisfies

− 2D0
ne0 = (−µ2

nL+M)Cn. (5.5)

Indeed, since Yn is an eigenfunction associated with the eigenvalue λ2n, the
n-th Fourier mode of the right hand side of (3.20) is

−1

2
(λ2nLCn + (−k2L+M)Cn)Yn =

−1

2
(−µ2

nL+M)CnYn,

while that of the left hand side isD0
ne0Yn. Applying the inner product (·, ·)CP+1

in CP+1 of (5.5) against Cn leads to

−2D0
nC̄

0
n = −µ2

n(LCn,Cn)CP+1 + (MCn,Cn)CP+1

=
P∑

j=0

[−µ2
n

aj
|Cj

n + Cj+1
n |2 + aj |Cj

n − Cj+1
n |2

]
,

(5.6)

where C̄j
n is the complex conjugate of Cj

n and CP+1
n = 0. Owing to (5.3) and

(5.4), the left hand side of (5.6) is given by

4µnℑ(AnB̄ne
2iµnb)− 2µn(|An|2 − |Bn|2)i= −4µn|An|2ℑ(e2iµnb) (5.7)

for n < N (propagating modes, µn > 0),

2µ̃n(|An|2e−2µ̃nb − |Bn|2e2µ̃nb) + 4µ̃nℑ(AnB̄n)i= 2µ̃n|An|2(e−2µ̃nb − e2µ̃nb)
(5.8)

for n > N (evanescent modes, µ2
n < 0) and

− 2b|BN |2 (5.9)

for n = N (cutoff mode, µn = 0).
Now, we are ready to prove the uniqueness of solutions.

Lemma 5.1 Suppose that the parameters aj are given by (3.5) and k is a
positive wavenumber. Then solutions to the problem (3.17)-(3.21) are unique.
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Proof For n < N (µ2
n > 0), by (5.6) and (5.7)

−4µn|An|2ℑ(e2iµnb) =

np−1∑

j=0

[ −µ2
n

−ikcj
|Cj

n + Cj+1
n |2 − ikcj |Cj

n − Cj+1
n |2

]

+

np+ne∑

j=np

[−µ2
n

σj
|Cj

n + Cj+1
n |2 + σj |Cj

n − Cj+1
n |2

]
.

(5.10)
Comparing the imaginary parts of both sides, we see that

Cj
n = 0 for j = 0, . . . , np and n = 0, . . . , N − 1. (5.11)

In addition, since C0
n = C1

n = 0, it follows from the zeroth row of (5.5) that
D0

n = 0, which yields that An = Bn = 0 for n = 0, . . . , N − 1 by solving the
equation (5.4). Then, (5.5) becomes

(−µ2
nL+M)Cn = 0. (5.12)

Since the superdiagonal entries of −µ2
nL+M below the (np − 1)-th row are

non-zero,

−µ
2
n

aj
− aj = −µ

2
n

σj
− σj < 0

for j = np, . . . , np+ne, applying forward substitution to (5.12) from the np-th
row by using Cj

n = 0 for j = 0, . . . , np gives Cj
n = 0 for j = np+1, . . . , np+ne.

For n > N (µ2
n < 0), (5.10) with (5.8) used instead of (5.7) leads to

2µ̃n|An|2(e−2µ̃nb − e2µ̃nb) =

np−1∑

j=0

[ −µ2
n

−ikcj
|Cj

n + Cj+1
n |2 − ikcj |Cj

n − Cj+1
n |2

]

+

np+ne∑

j=np

[−µ2
n

σj
|Cj

n + Cj+1
n |2 + σj |Cj

n − Cj+1
n |2

]
.

Since the real part of the left hand side is non-positive while that of the right
hand side is non-negative, they need to be zero, which implies that An = Bn =
0 and Cj

n = 0 for j = np, . . . , np + ne. We observe that An = Bn = 0 implies
D0

n = 0, and so again from (5.5) obtain the linear equation (5.12) as above.
In this case, since the subdiagonal entries of −µ2

nL+M above the (np +1)-th
row are non-zero,

−µ2
n

aj
− aj =

−µ2
n

−ikcj
+ ikcj 6= 0

for j = 0, . . . , np − 1, we solve (5.12) by backward substitution from the np-th
row by using Cj

n = 0 for j = np, . . . , np + ne and then we can see that Cj
n = 0

for j = 0, . . . , np − 1.
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For n = N (µ2
n = 0), (5.6) becomes

−2b|BN |2 =

np−1∑

j=0

−ikcj|Cj
n − Cj+1

n |2 +
np+ne∑

j=np

σj |Cj
n − Cj+1

n |2.

By comparing the real and imaginary parts of both sides, it can be easily
shown that Cj

n = 0 for all j = 0, . . . , P . In addition, due to C0
N = BNb and

(5.2), we have AN = BN = 0.

Finally, the fact that An = Bn = 0 and Cj
n = 0 for all n ≥ 0 and j =

0, . . . , P results in u = 0 in Ωb and φj = 0 on ΓE for j = 0, . . . , P , which
completes the proof of the uniqueness of solutions.

⊓⊔

Theorem 5.2 The problem (3.17)-(3.21) has a unique solution (u, Φ) ∈ V.

Proof By invoking Lemma 4.3, we can show boundedness of A(·, ·), i.e., there
exists a positive constant C1 such that

|A((u, Φ), (ξ, Ψ))| ≤ C1‖(u, Φ)‖V‖(ξ, Ψ)‖V.

Furthermore, Lemma 4.3 and Lemma 4.4 show that there exist positive con-
stants C2 and C3 such that

A((u, Φ), (u, Φ)) = Ã((u, Φ), (u, Φ))− 2(k2 + 1)‖u‖2L2(Ωb)

− (k2 + 1)(LΦ,Φ)ΓE + ((M − M̄)Φ,Φ)ΓE

≥ C2‖(u, Φ)‖2V − C3

(
‖u‖2L2(Ωb)

+ ‖Φ‖2L + ‖Φ‖2M
)

(5.13)

for all (u, Φ), (ξ, Ψ) ∈ V0. Since V0 is compactly embedded in L2(Ωb) ×
(L2(ΓE))

P+1, the existence of solutions is a consequence of the Fredholm al-
ternative theorem and the uniqueness of solutions given in Lemma 5.1.

⊓⊔

In the proof, it is not established how the stability constant depends on the
number of parameters, P +1. This will be studied in more detail in Section 8.

Remark 5.3 Let V∗
0 be the dual space of V0 with the norm

‖G‖V∗

0
= sup

06=(ξ,Ψ)∈V0

|G(ξ, Ψ)|
‖(ξ, Ψ)‖V

for G ∈ V
∗
0. The same argument used in the proof of Theorem 5.2 can show

that the problem A((u, Φ), (ξ, Ψ)) = G(ξ, Ψ) for all (ξ, Ψ) ∈ V0 admits a unique
solution in V0.
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We can find a formula for the approximate solution u and φj satisfying the
CRBC on ΓE in terms of a prescribed condition f ∈ H1/2(ΓW ). To this end,
let f ∈ H1/2(ΓW ) be a boundary datum, which has a Fourier series

f(y) =

∞∑

n=0

fnYn(y),

and introduce

Qn
j,m =





m∏

ℓ=j

aℓ + iµn

aℓ − iµn
for m ≥ j,

1 for m < j,

(5.14)

for n 6= N . Now, φj in the recursions (3.4) are represented by a Fourier series
similar to (5.1),

φj(x, y) = (Aj
N +Bj

Nx)YN (y) +
∑

n6=N

(Aj
ne

iµnx +Bj
ne

−iµnx)Yn(y)

with A0
n = An and B0

n = Bn.
Non-cutoff modes, n 6= N : By (3.4) it is easily shown that

(aj − iµn)A
j+1
n = (aj + iµn)A

j
n,

(aj + iµn)B
j+1
n = (aj − iµn)B

j
n

(5.15)

for all j. If aj + iµn 6= 0 for all 0 ≤ j ≤ P , then it holds that

Aj
n = Qn

0,j−1An and Bj
n =

1

Qn
0,j−1

Bn for 0 ≤ j ≤ P.

The coefficients An and Bn of the approximate solution u in (5.1) are deter-
mined by the system of linear equations

An +Bn = fn,

eiµnbQn
0,PAn + (eiµnbQn

0,P )
−1Bn = 0,

from which one can easily see that

An =
fn

1− (eiµnbQn
0,P )

2
and Bn =

−(eiµnbQn
0,P )

2fn

1− (eiµnbQn
0,P )

2
. (5.16)

If aj + iµn = 0 for some j, then a similar computation shows that Aj
n =

Qn
0,j−1An and Bj

n = 0 for all j and hence (5.16) is still valid.
Cutoff modes, n = N : By the recursive relations (3.4), we observe

Bj
N = Bj+1

N , Bj
N + ajA

j
N = −Bj+1

N + ajA
j+1
N , (5.17)

which implies

Bj
N = BN and Aj

N = AN + 2

j−1∑

ℓ=0

1

aℓ
BN
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for j = 1, . . . , P . From the boundary condition A0
N = fN and the terminal

condition

AP
N +BP

Nb = 0, (5.18)

we find

AN = fN and BN =
−fN

b+ 2
∑P

j=0 a
−1
j

. (5.19)

The formula (5.19) reveals the convergence of cutoff modes provided
∑P

j=0 a
−1
j →

∞.
We note that better results if a cutoff mode is known to be present could

be obtained by changing the termination condition (3.8) to

∂

∂x
φP+1 = 0, (5.20)

since cutoff modes do not have any variation along the axis of the waveg-
uide. In fact, the CRBC terminated by (5.20) yields coefficients An and Bn of
approximate solutions such that

An =
fn

1 + (eiµnbQn
0,P )

2
and Bn =

−(eiµnbQn
0,P )

2fn

1 + (eiµnbQn
0,P )

2
,

which converge to the exact coefficients at the same rate as those of (5.16) by
the Dirichlet condition, but AN = fN and BN = 0, which coincide with those
of the exact solution. However this would change the form of the boundary
system and require further analysis. Thus we do not consider it here but refer
readers to [23].

Alternatively, we can guarantee rapid convergence independent of the dis-
tribution of eigenvalues by using Newman nodes which converge to 0 geomet-

rically, for example Newman’s nodes aj = −ikej/
√
P for propagating modes

and/or their analogous form in the evanescent regime [7,22]. Even though
it turns out that with such a choice our bounds on the stability constants

degenerate with e
√
P , our experiments, presented in Section 10, indicate the

discretized problem keeps a convergence rate expected in the continuous level
with increasing P as long as the problem is discretized with small mesh size
compensating the degenerating stability constants.

6 Convergence of approximate solutions satisfying CRBCs

In this section, we show convergence of approximate solutions satisfying CR-
BCs. As we have seen above, the error of the cutoff mode is estimated in terms
of

SP = |b+ 2

P∑

j=0

a−1
j |−1,
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which approaches zero as the order P increases. For non-cutoff modes the error
is controlled by the following factor

∣∣−eiµnb(Qn
0,P )

2
∣∣ =






np−1∏

j=0

∣∣∣∣
aj + iµn

aj − iµn

∣∣∣∣
2

for 0 ≤ n ≤ N − 1,

e−µ̃nb

np+ne∏

j=np

∣∣∣∣
aj − µ̃n

aj + µ̃n

∣∣∣∣
2

for N + 1 ≤ n.

Since limn→∞ |Qn
0,P | = 1, the error does not decay exponentially as a function

of P . However, since the factor eiµnb decays exponentially for large n, we can
bound the error almost by an exponential function of P (except for the cutoff
mode) in the sense of the following theorem. The optimal choice of parameters
would depend on a knowledge of the axial frequencies µn, µ̃n. Later on we
will advocate a simpler approach based only on the knowledge of intervals
containing the axial frequencies. We then introduce the min-max problems
determining the reflection coefficients for each n 6= N ,

ρp = min
a0,...,anp−1∈iR−

max
µN−1≤η≤k

np−1∏

j=0

∣∣∣∣
aj + iη

aj − iη

∣∣∣∣
2

, (6.1)

ρe = min
anp ,...,anp+ne∈R+

max
µ̃N+1≤η̃≤Mσ

e−η̃b

np+ne∏

j=np

∣∣∣∣
aj − η̃

aj + η̃

∣∣∣∣
2

. (6.2)

Here we recall thatMσ is determined by e−Mσb less than an error tolerance. It
is shown in [30] that the reflection coefficients can be reduced at an exponential
rate with respect to the number of parameters used,

ρp ≤ e−Cnp/ ln(k/µN−1),

ρe ≤ e−µ̃N+1be−Cne/ ln(Mσ/µ̃N+1).
(6.3)

by selecting parameters which satisfy (6.1)-(6.2). These are easy to compute
in practice using the Remez algorithm, and in the case of (6.1) they are known
analytically (see [7]).

Theorem 6.1 Suppose that f is in H1/2(ΓW ), uex is the exact radiating so-
lution to the problem (2.1)-(2.3) and u is the solution to the problem (3.17)-
(3.21). Then it holds that

‖u− uex‖H1(Ωb) ≤ Cρ(Mσ, np, ne)‖f‖H1/2(ΓW ), (6.4)

where

ρ(Mσ, np, ne) = max{SP , e
−Cnp/ ln(k/µN−1), e−µ̃N+1be−Cne/ ln(Mσ/µ̃N+1), e−Mσb}.
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Remark 6.2 We have not attempted to sharply estimate the dependence of the
inequality (6.4) on the wave number k, or on the k-dependence of inequalities
(8.3), (8.4), (9.3), or (9.4). From the arguments given we can only derive
bounds which grow very rapidly with k. Numerical experiments with k as large
as 100 show that the actual k-dependence of the stability and error constants
is in fact quite mild.

Remark 6.3 Note that the term SP is absent if no cutoff modes exist. Then
we have that with node choices satisfying (6.1)-(6.2) and an error tolerance τ

P ∝ ln

(
1

τ

)
· ln
(
ln

(
1

τ

))
(6.5)

suffices.

To prove Theorem 6.1, we start by studying the regularity of solutions
satisfying the exact radiation condition given by the Dirichlet-to-Neumann
map on the artificial boundary ΓE . For 0 ≤ s ≤ 2, let T : Hs(ΓE) → Hs−1(ΓE)
be the Dirichlet-to-Neumann map defined by

Tv =
∞∑

n=0

iµnvnYn

for v =
∑∞

n=0 vnYn in Hs(ΓE). We consider the problem with the exact
boundary condition associated with the Dirichlet-to-Neumann map T : For
gin ∈ Hs(Ωb) and gbd ∈ Hs+1/2(ΓE) with −1 ≤ s ≤ 0,

∆u+ k2u = gin in Ωb,

u = 0 on ΓW ,
∂u

∂ν
= 0 on ΓT ,

∂u

∂x
− Tu = gbd on ΓE .

(6.6)

As in [3], it can be shown that the regularity of solutions satisfying the exact
boundary condition holds by transforming the problem to one without the
Dirichlet condition on ΓW via the odd reflection with respect to ΓW .

Lemma 6.4 For gin ∈ Hs(Ωb) and gbd ∈ Hs+1/2(ΓE) with −1 ≤ s ≤ 0, the
problem (6.6) admits a unique solution in Hs+2(Ωb). Moreover, there exists a
positive constant C such that

‖u‖Hs+2(Ωb) ≤ C(‖gin‖Hs(Ωb) + ‖gbd‖Hs+1/2(ΓE)).

Now, the proof of Theorem 6.1 is as follows.
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Proof (Proof of Theorem 6.1) We first note that the error function z = u−uex
satisfies

∆z + k2z = 0 in Ωb,

z = 0 on ΓW ,
∂z

∂ν
= 0 on ΓT ,

∂z

∂x
− Tz = gbd on ΓE ,

where gbd has the Fourier series

gbd =
∂u

∂x
− Tu =

−1

b+ 2
∑P

j=0 a
−1
j

fNYN +
∑

n6=N

2iµne
iµnb(Qn

0,P )
2

1− (eiµnbQn
0,P )

2
fnYn (6.7)

by using (5.16) and (5.19).

Let N∗ > N be the largest integer such that µ̃N∗
≤ Mσ. Since |1 −

(eiµnbQn
0,P )

2| is bounded away from zero for all n ≥ 0 and |µn|2 ≤ C(λ2n + 1)
for all n 6= N , by (6.3) we obtain

‖gbd‖2H−1/2(ΓE) ≤ C

( ∑

0≤n≤N−1

e−2Cnp/ ln(k/µN−1) |µnfn|2
(1 + λ2n)

1/2

+
∑

N+1≤n≤N∗

e−2µ̃nbe−2Cne/ ln(Mσ/µ̃N+1)
|µnfn|2

(1 + λ2n)
1/2

+
∑

N∗+1≤n

e−2Mσb
|µnfn|2

(1 + λ2n)
1/2

+
1

|b+ 2
∑P

j=0 a
−1
j |2

|fN |2
)

≤ Cρ(Mσ, np, ne)
2‖f‖2H1/2(ΓW ).

Finally, Lemma 6.4 completes the proof of (6.4). ⊓⊔

Remark 6.5 When the parameters aj are chosen such that

aj = −iµj for j = 0, . . . , N − 1 and aj = µ̃j+1 for j = N, . . . , P,

the CRBCs behave as the exact boundary conditions for the important P + 1
modes, which are all propagating modes combined with slowly decaying evanes-
cent modes. These are the modes which would produce the largest reflections
without efficient absorbing boundary conditions. Since Qn

0,P = 0 for n =
0, . . . , P and n 6= N , the error is estimated as

‖u− uex‖H1(Ωb) ≤ C(SP + e−µ̃P+1b)‖f‖H1/2(ΓW ),

where again SP is absent if there are no cutoff modes.
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7 Parameter Selection

The general error formulas derived in the preceding section can be used to
guide the selection of optimal parameters. Experiments with an automatic
parameter selection algorithm will be reported elsewhere; here we will make
selections which, though suboptimal, show that the number of parameters will
be small even for difficult cases.

Optimal parameters for a fixed P , chosen independent of f and minimizing
the error in the Fourier coefficients at x = b, would be those which minimize
the maximum over n 6= N of

ρ ≡
∣∣−eiµnb(Qn

0,P )
2
∣∣ =

{∣∣(Qn
0,P )

2
∣∣ for µ2

n > 0,∣∣e−µ̃nb(Qn
0,P )

2
∣∣ for µ2

n < 0.
(7.1)

Note that the number of propagating modes is finite, as is the number of
evanescent modes satisfying e−µ̃nb > τ for any error tolerance τ . The remain-
ing evanescent modes are sufficiently small at the boundary, so the value of∣∣(Qn

0,P )
2
∣∣ ≤ 1 is unimportant. Moreover, the number of important modes in-

creases with increasing k; for k small it is feasible to directly compute this small
number of modes and choose parameters which are exact on these modes. (For
a discussion of conditions using a different set of auxiliary variables which are
exact for propagating modes, see Bendali and Guillaume [3].)

Here we look at the simpler problem of minimizing ρ over an entire interval
rather than over a discrete set. We introduce the following scalings:

η ≡ µ/k (η̃ ≡ µ̃/k), ãj ≡ aj/k, b = 2πk−1nλ,

where nλ is the number of wavelengths of the normally propagating mode,
eikx, on the interval [0, b]. Now, we explicitly assume that µn 6= 0; that is the
cutoff mode is absent. To perform the optimizations we quantify the gap in
the spectrum near 0

η2 ≥ c20 and η̃2 ≥ g20 (7.2)

for some constants c0 and g0. In real situations, c0 and g0 would be some
constants approximate to the smallest axial frequency, µN−1, of propagating
modes and smallest decay rate, µ̃N+1, of evanescent modes, respectively. We
then consider the reflection coefficients

ρp = max
c0≤η≤1

np−1∏

j=0

∣∣∣∣
ãj + iη

ãj − iη

∣∣∣∣
2

, (7.3)

ρe = max
η̃≥g0

e−2πnλη̃

np+ne∏

j=np

∣∣∣∣
ãj − η̃

ãj + η̃

∣∣∣∣
2

. (7.4)

For fixed values of np and ne, we can compute optimal parameters using
the Remez algorithm (see, e.g., [30]). For instance, consider the truncated
waveguide Ωb defined with W = 1, b = 0.1. When the wavenumber is k = 100,
there are 32 propagating modes involved in acoustic pressure fields. For np = 4
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Fig. 3 Reflection coefficients of |ρp| and |ρe| as a function of n with the optimal parameters
obtained by Remez algorithm.

and ne = 3, the Remez algorithm applied to minimization of the maximal
reflection coefficients (7.3) and (7.4) produces the damping parameters with
which the graphs of the reflection coefficients as a function of n are presented in
Figure 3. It indicates that reflection of all propagating modes and evanescent
modes can be reduced up to 3.9590×10−6 and 5.3492×10−5, respectively. Here
the upper bound for η̃ in the Remez algorithm is determined in a way that the
modes between the vertical green lines damped effectively. Note that our simple
Matlab implementation of the Remez algorithm, which uses a geometrical
sequence as an initial guess, has converged rapidly for all the cases considered
here. The authors will provide it to any interested readers.

To determine the smallest P for a given tolerance, τ , as a function of c0, g0
and nλ we simply find the smallest values of np and ne such that the optimal
nodes chosen by the Remez algorithm lead to ρp ≤ τ , ρe ≤ τ .

Note that these approximations can be directly related to optimal approxi-
mation of the square root function, which was solved by Zolotarev using elliptic
functions [30]. The error estimates developed in [22,7] state the error in the
Zolotarev approximation of degree (d − 1, d) on the interval [z0, z1] to be of

the order e−π2d/ ln (z1/z0). For propagating modes this implies

np ∝ ln

(
1

τ

)
· ln
(

1

c0

)
. (7.5)

For evanescent modes we note that the largest value of η̃ is relevant scales like
n−1
λ ln

(
1
τ

)
. Thus we conclude that

ne ∝ ln

(
1

τ

)
· ln
(

1

nλg0

)
+ ln

(
1

τ

)
· ln ln

(
1

τ

)
. (7.6)

We carried out the optimizations discussed above for the parameters

c0 = {10−2, 10−4}, g0 = {10−2, 10−4}, nλ = {1, 0.1}, τ = {10−3, 10−5}.
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The results are shown in Table 1. Based on the Remez algorithm the results
are consistent with the estimates (7.5)-(7.6). We emphasize that these results
are definitely suboptimal as they do not take account of the actual modal
distributions. Methods for constructing better parameters may be based, for
example, on rational Krylov algorithms [28,8,14] applied to the finite element
discretization of the cross-sectional Laplace operator.

c0 g0 nλ τ Popt with (3.5)

10−2 10−2 1 10−3 10
10−2 10−2 1 10−5 16
10−2 10−2 0.1 10−3 12
10−2 10−2 0.1 10−5 18
10−2 10−4 1 10−3 14
10−2 10−4 1 10−5 21
10−2 10−4 0.1 10−3 16
10−2 10−4 0.1 10−5 24
10−4 10−2 1 10−3 14
10−4 10−2 1 10−5 22
10−4 10−2 0.1 10−3 16
10−4 10−2 0.1 10−5 25
10−4 10−4 1 10−3 18
10−4 10−4 1 10−5 28
10−4 10−4 0.1 10−3 20
10−4 10−4 0.1 10−5 31

Table 1 Number of terms needed to meet the tolerance, τ , for select values of c0, g0, and
nλ.

In practice, then, we recommend the following procedure to select the
method parameters. Given a choice of b, which can be taken as the sepa-
ration between the radiation boundary and any sources, scatterers, or inho-
mogeneities, and an error tolerance, τ :

i If possible estimate the number of important modes; in many cases this can
be done based on the frequency, k, and the geometry of the cross-section
using standard inequalities on the spectrum of elliptic operators [6]. If
this is small enough, for propagating modes, evanescent modes, or both,
application of a Lanczos algorithm [32] will produce them at minimal cost.
Then choose the parameters to exactly absorb these modes.

ii If the use of exact conditions is deemed inefficient, again for propagating
modes, evanescent modes, or both, use the Lanczos algorithm to compute
the eigenvalues nearest k2 and use that information to define the intervals
for input into the Remez algorithm.
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8 Stability and regularity of the variational problem

In this section, we study the stability and regularity of the variational problems

A((u, Φ), (ξ, Ψ)) = (fs, ξ)ΓE (8.1)

for all (ξ, Ψ) ∈ V0 with fs ∈ L2(Ωb) supported away from ΓE , and

A((u, Φ), (ξ, Ψ)) = (LΥ, Ψ)ΓE (8.2)

for all (ξ, Ψ) ∈ V0 with the source LΥ , Υ ∈ (L2(ΓE))
P+1 being given as

auxiliary variables. The study of the problem (8.1) suffices for verification of
the stability and regularity of solutions to the problem (4.1) since the boundary
value problem can be reduced to the source problem due to a lifting of the
boundary condition. Also, these results will come into play in the finite element
analysis.

8.1 Stability and regularity of solutions to Problem (8.1)

We note that the problem (8.1) has a unique solution in V0 by Remark 5.3.
The energy norm estimates for the solution u and the auxiliary variables Φ
are given in the following theorem.

Theorem 8.1 Let aj be the parameters defined by (3.5) satisfying (3.6). Then
for any fs ∈ L2(Ωb) supported away from ΓE, the solution (u, Φ) to the problem
(8.1) satisfies

‖u‖H1(Ωb) ≤ C‖fs‖L2(Ωb)

and
‖Φ‖VΓE

≤ Ca(P + 1)‖fs‖L2(Ωb).

In addition, the regularity result holds,

‖u‖H2(Ωb) ≤ C‖fs‖L2(Ωb) (8.3)

and
‖Φ‖V2

ΓE
≤ Ca(P + 1)‖fs‖L2(Ωb). (8.4)

If cutoff modes are excluded, the constants Ca for the stability and regularity
estimates are independent of aj and the exponents on (P +1) are halved; that
is the constants in the estimates of Φ become C(P + 1)1/2.

The proof of Theorem 8.1 proceeds based on a sequence of lemmas for
solution formulas of auxiliary variables. In order to study the stability estimate
of problem (8.1), it is required to analyze the auxiliary variables solving the
problem

−L∆yΦ+ (−k2L+M)Φ = E0e0 in ΓE ,

∂Φ

∂ν
= 0 on ∂ΓE.

(8.5)
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The n-th Fourier coefficients Φn of Φ satisfy the equation

− µ2
nLΦ

n +MΦn = En
0 e0. (8.6)

We start by finding the explicit form of the solution Φn with En
j ej for j =

0, . . . , P on the right hand side of (8.6), recalling the definition (5.14) of Qn
j,m

for n 6= N .

Lemma 8.2 Suppose that aj 6= −iµn and µn is not a cutoff axial frequency,
i.e., µn 6= 0. Let Φn ∈ CP+1 be a solution to the linear system (8.6) with En

j ej

on the right hand side. Then φnℓ is given by the formula φnℓ = snℓ,jE
n
j , where

snℓ,j =






(1 + (Qn
0,ℓ−1)

2)Qn
ℓ,j−1(1 − (Qn

j,P )
2)

−4iµn(1 + (Qn
0,P )

2)
if ℓ ≤ j,

(1 + (Qn
0,j−1)

2)Qn
j,ℓ−1(1− (Qn

ℓ,P )
2)

−4iµn(1 + (Qn
0,P )

2)
if ℓ ≥ j.

(8.7)

Proof We will find the solution Φn in the form

φnℓ =





Qn
0,ℓ−1Ãn +

1

Qn
0,ℓ−1

B̃n for ℓ = 0, 1, . . . , j,

Qn
j,ℓ−1C̃n +

1

Qn
j,ℓ−1

D̃n for ℓ = j, j + 1, . . . , P
(8.8)

for 0 < j < P . When j = 0 or P , we assume that φnℓ is defined by the upper
formula with ℓ = 0, 1, . . . , P . Here we will verify the formulas for 0 < j < P ,
as the other cases can be treated with only small modifications.

By the definition of Qn
j,m one can easily show that the three term recursions

(−µ2
nLℓ,ℓ−1+Mℓ,ℓ−1)φ

n
ℓ−1+(−µ2

nLℓ,ℓ+Mℓ,ℓ)φ
n
ℓ +(−µ2

nLℓ,ℓ+1+Mℓ,ℓ+1)φ
n
ℓ+1 = 0

hold for ℓ 6= 0, j, P . Thus, the four unknowns Ãn, B̃n, C̃n and D̃n are to be
determined by

− 2iµn(Ãn − B̃n) = 0 (8.9)

from the 0-th equation,

Qn
0,ℓ−1Ãn +

1

Qn
0,ℓ−1

B̃n = C̃n + D̃n (8.10)

from the definition of φnℓ with ℓ = j,

(Qn
0,ℓ−1Ãn − 1

Qn
0,ℓ−1

B̃n)− (C̃n − D̃n) =
1

2iµn
En

j (8.11)

from the j-th equation and

Qn
j,P C̃n +

1

Qn
j,P

D̃n = 0 (8.12)
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from the P -th equation. Solving the equations (8.9)-(8.12) leads to

Ãn =
(1 − (Qn

j,P )
2)Qn

0,j−1

−4iµn(1 + (Qn
0,P )

2)
En

j , B̃n =
(1− (Qn

j,P )
2)Qn

0,j−1

−4iµn(1 + (Qn
0,P )

2)
En

j ,

C̃n =
(1 + (Qn

0,j−1)
2)

−4iµn(1 + (Qn
0,P )

2)
En

j , D̃n =
(1 + (Qn

0,j−1)
2)(Qn

j,P )
2

4iµn(1 + (Qn
0,P )

2)
En

j

and hence the formula (8.7) is obtained.
⊓⊔

The next lemma gives solution formulas when there exists an index J such
that aJ + iµn = 0. In this case the problem can be written as two block
systems. The first block system is reduced to the case in Lemma 8.2, and the
formulas for the second one can be derived by a similar computation to that
used in Lemma 8.2 and hence we omit the proof.

Lemma 8.3 Suppose that there exists an index J such that aJ + iµn = 0.
Let Φn ∈ CP+1 be a solution to the linear system (8.6) with En

j ej in the right
hand side. Then φnℓ are given by the formula φnℓ = snℓ,jE

n
j , where if j ≤ J

snℓ,j =





−1

4iµn
(1 + (Qn

0,ℓ−1)
2)Qn

ℓ,j−1 if ℓ ≤ j,

−1

4iµn
(1 + (Qn

0,j−1)
2)Qn

j,ℓ−1 if ℓ ≥ j
(8.13)

and if j > J

snℓ,j =





−1

4iµn
Qn

ℓ,j−1(1− (Qn
j,P )

2) if ℓ ≤ j,

−1

4iµn
Qn

j,ℓ−1(1− (Qn
ℓ,P )

2) if ℓ ≥ j.
(8.14)

We notice that these formulas in Lemma 8.3 are consistent with (8.7) since
Qn

c,d = 0 for c ≤ J ≤ d.
As a special case the solution to (8.6) is given in the following lemma.

Lemma 8.4 Let Φn ∈ CP+1 be a solution to the linear system (8.6). For
n 6= N , the φnℓ are given by

φnℓ =
−Qn

0,ℓ−1(1− (Qn
ℓ,P )

2)

2iµn(1 + (Qn
0,P )

2)
En

0 (8.15)

and

φnℓ =
Qn

0,ℓ−1(1− (Qn
ℓ,P )

2)

(1− (Qn
0,P )

2)
φn0 (8.16)

for ℓ = 0, . . . , P . For n = N ,

φnℓ =

P∑

j=ℓ

1

aj
En

0 . (8.17)
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Proof When aj + iµn 6= 0 for all j, the formula (8.15) is obtained from (8.7)
with j = 0. If there exists J such that aJ + iµn = 0, (8.15) immediately follows
from (8.13) and noting that Qn

ℓ,P = 0 for ℓ ≤ J and Qn
0,ℓ−1 = 0 for ℓ ≥ J + 1.

In addition, we have (8.16) by rewriting En
0 in terms of φn0 .

The formula (8.17) for n = N is obtained straightforwardly by Gaussian
elimination.

⊓⊔

We note that by the arithmetic-geometric mean inequality

1√
|aℓ|

|1 +Qn
ℓ,ℓ| =

2
√
|aℓµn|

|aℓ − iµn|
1√
|µn|

≤ C√
|µn|

,

√
|aℓ||1−Qn

ℓ,ℓ| =
2
√
|aℓµn|

|aℓ − iµn|
√
|µn| ≤ C

√
|µn|

(8.18)

and (λ2n + 1) ≤ C|µn|2 for n 6= N .

Lemma 8.5 Let aj be the parameters defined by (3.5) satisfying (3.6). We
assume that Φ ∈ VΓE , φ0 ∈ Hs+1/2(ΓE) and E0 ∈ Hs−1/2(ΓE) for s ≥ 0. If
Φ and E0 satisfy (8.5), then it holds that

‖Φ‖VΓE
≤ Ca(P + 1)(‖E0‖H−1/2(ΓE) + ‖φ0‖H1/2(ΓE)) for s = 0.

In addition, we have the regularity estimate

‖Φ‖V2
ΓE

≤ Ca(P + 1)(‖E0‖H1/2(ΓE) + ‖φ0‖H3/2(ΓE)) for s = 1.

If cutoff modes are excluded, the constants Ca for the stability and regularity
estimates are independent of aj and the exponents on (P +1) are halved; that
is the constants in the estimates of Φ become C(P + 1)1/2.

Proof Cutoff modes, n = N : By using the solution formula (8.17), we have

‖ΦN‖2M =

P∑

ℓ=0

|aℓ||φNℓ − φNℓ+1|2 =

P∑

ℓ=0

1

|aℓ|
|EN

0 |2 = |EN
0 |

P∑

ℓ=0

1

|aℓ|
|EN

0 |

≤
√
2|EN

0 ||φN0 | =
√
2

|∑P
ℓ=0 a

−1
ℓ |

|φN0 |2 ≤ C|φN0 |2.
(8.19)

Here we used (8.17) with ℓ = 0 for the first inequality. Also, invoking Lemma 4.5
and (8.19), we are led to

‖ΦN‖2L ≤ C2
a(P + 1)2‖ΦN‖2M ≤ C2

a(P + 1)2|φN0 |2.

Thus, since λN = k is a constant, we have

(λ2N +1)s((λ2N +1)‖ΦN‖2L+‖ΦN‖2M) ≤ C2
a(P+1)2(λ2N +1)s+1/2|φN0 |2. (8.20)
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Non-cutoff modes, n 6= N : For the estimation of non-cutoff modes, we de-
compose N \ {N} into two disjoint sets N1 and N2,

N1 = {n ∈ N \ {N} : |1 + (Qn
0,P )

2| ≥ 1} and N2 = N \ (N1 ∪ {N}).

Since |1 + (Qn
0,P )

2| ≥ 1 or |1 − (Qn
0,P )

2| ≥ 1 for each n ≥ 0, if n ∈ N2, then

|1− (Qn
0,P )

2| ≥ 1. Therefore, for n ∈ N1 the solution formula (8.15) implies

|φnℓ + φnℓ+1| =
∣∣∣∣∣
Qn

ℓ−1(1− (Qn
ℓ+1,P )

2Qn
ℓ,ℓ)

(1 + (Qn
0,P )

2)

(1 +Qn
ℓ,ℓ)E

n
0

2iµn

∣∣∣∣∣ ≤ C

∣∣∣∣
(1 +Qn

ℓ,ℓ)E
n
0

2iµn

∣∣∣∣ ,

and by (8.18) we have

1

|aℓ|
|φnℓ + φnℓ+1|2 ≤ C

|En
0 |2

|µn|3
. (8.21)

A similar computation yields that

|aℓ||φnℓ − φnℓ+1|2 = |aℓ|
∣∣∣∣∣
Qn

ℓ−1(1 + (Qn
ℓ+1,P )

2Qn
ℓ,ℓ)

(1 + (Qn
0,P )

2)

(1−Qn
ℓ,ℓ)E

n
0

2iµn

∣∣∣∣∣

2

≤ C|aℓ||1−Qn
ℓ,ℓ|2

|En
0 |2

|µn|2
≤ C

|µn|
|En

0 |2.
(8.22)

Combining (8.21) and (8.22) yields

(λ2n + 1)s((λ2n + 1)‖Φn‖2L + ‖Φn‖2M) ≤ C(P + 1)

(
(λ2n + 1)s+1

|µn|3
+

(λ2n + 1)s

|µn|

)
|En

0 |2

≤ C(P + 1)(λ2n + 1)s−1/2|En
0 |2.

(8.23)
On the other hand, the same calculation as above but using (8.16) instead

of (8.15) shows that for n ∈ N2

1

|aℓ|
|φnℓ + φnℓ+1|2 ≤ C

|µn|
|φn0 |2,

|aℓ||φnℓ − φnℓ+1|2 ≤ C|µn||φn0 |2,

from which it follows that

(λ2n + 1)s((λ2n + 1)‖Φn‖2L + ‖Φn‖2M) ≤ C(P + 1)(λ2n + 1)s+1/2|φn0 |2. (8.24)

Finally, we obtain the stability and regularity estimates by using (8.20),
(8.23) and (8.24) for s = 0 and s = 1, respectively. ⊓⊔

Proof (Proof of Theorem 8.1) It suffices to prove the regularity estimates (8.3)
and (8.4). Let uex be the solution to the problem (6.6) with gin = fs and
gbd = 0 satisfying

‖uex‖H2(Ωb) ≤ C‖fs‖L2(Ωb) (8.25)
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by Lemma 6.4. Also, by u we denote the solution satisfying CRBCs, i.e.

∆u+ k2u = fs in Ωb,

u = 0 on ΓW ,
∂u

∂ν
= 0 on ΓT ,

BP (u) = 0 on ΓE ,

(8.26)

where BP (u) = φP+1 is the trace of the (P +1)-th auxiliary variable φP+1 on
ΓE . Since u

ex is expressed as uex =
∑∞

n=0A
ex
n e

iµnxYn beyond the support of
fs, the error function z = u− uex satisfies

BP (z) = BP (−uex) = −Aex
N YN −

∑

n6=N

Qn
0,pA

ex
n e

iµnbYn.

Assume that z is written as z = (AN+BNx)YN+
∑

n6=N (Ane
iµnx+Bne

−iµnx)Yn.
If there exists an index J such that aJ + iµn = 0 for some n, then the error
does not include the corresponding mode, i.e., An = Aex

n and Bn = 0. Other-
wise, the boundary conditions on ΓE and ΓW lead to the linear problem for
An and Bn,

An +Bn = 0,

Qn
0,P e

iµnbAn +
1

Qn
0,P e

iµnb
Bn = −Qn

0,P e
iµnbAex

n ,

for n 6= N and

AN = 0 and AN +BN (b+ 2

P∑

j=0

a−1
j ) = −Aex

N

for n = N . It then follows that

An =
(Qn

0,P e
iµnb)2

1− (Qn
0,P e

iµnb)2
Aex

n and Bn =
−(Qn

0,P e
iµnb)2

1− (Qn
0,P e

iµnb)2
Aex

n (8.27)

for n 6= N and

AN = 0 and BN =
−Aex

N

b+ 2
∑P

j=0 a
−1
j

for n = N .
Then z solves the problem (6.6) with gin = 0 and

gbd =
∂z

∂x
− T (z) =

−1

b+ 2
∑P

j=0 a
−1
j

Aex
N YN +

∑

n6=N

2iµne
iµnb(Qn

0,P )
2

1− (eiµnbQn
0,P )

2
Aex

n Yn.

Here, we note that gbd is in H1/2(ΓE). Indeed, from the boundedness of the
coefficients

1

b+ 2
∑P

j=0 a
−1
j

and
2i(Qn

0,P )
2

1− (eiµnbQn
0,P )

2
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of gbd, a trace theorem and (8.25), it follows that

‖gbd‖2H1/2(ΓE) ≤ C


(λ2N + 1)1/2|Aex

N |2 +
∑

n6=N

(λ2n + 1)1/2|µn|2|eiµnbAex
n |2




≤ C‖uex‖2H3/2(ΓE) ≤ C‖fs‖2L2(Ωb)
.

Therefore, Lemma 6.4 reveals that

‖u− uex‖H2(Ωb) ≤ C‖gbd‖H1/2(ΓE) ≤ C‖fs‖L2(Ωb),

which, in turn, results in (8.3)

‖u‖H2(Ωb) ≤ ‖z‖H2(Ωb) + ‖uex‖H2(Ωb) ≤ C‖fs‖L2(Ωb).

In addition, a trace inequality yields that

‖u‖H3/2(ΓE) and ‖∂u
∂x

‖H1/2(ΓE) ≤ C‖fs‖L2(Ωb), (8.28)

and hence Lemma 8.5 with φ0 = u and E0 = −2∂u/∂x on ΓE shows (8.4).
⊓⊔

8.2 Regularity of solutions to Problem (8.2)

It is clear that the solution (u, Φ) to the problem (8.2) solves

(−2
∂u

∂x
)e0 = −L∆yΦ+ (−k2L+M)Φ− Ξ in ΓE ,

∂Φ

∂ν
= 0 on ∂ΓE ,

(8.29)

where Ξ = LΥ .
As done in the previous subsection, we will derive explicit formulas for the

solution. We know that the solution has the series representation

u(x, y) = (AN +BNx)YN (y) +
∑

n6=N

(Ane
iµnx +Bne

−iµnx)Yn(y) (8.30)

and the linear systems for the n-th Fourier coefficients

2iµn(Ane
iµnb −Bne

−iµnb)e0 − µ2
nLΦ

n +MΦn = Ξn (8.31)

for n 6= N and
2Bne0 +MΦn = Ξn (8.32)

for n = N hold with Ξn being the n-th Fourier coefficients of Ξ. In case of
n 6= N , it suffices to derive the formula when aj 6= −iµn. Otherwise the system
matrix can be written as a 2 × 2 block diagonal matrix and solutions of the
lower block are given by the same formulas as (8.14) in Lemma 8.3.
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Lemma 8.6 Suppose that aj 6= −iµn and µn is not a cutoff axial frequency,
i.e. µn 6= 0. Then for Ξ = Ejej =

∑∞
n=0E

n
j Ynej, there exists a unique

solution to the problem (8.31) given by the formula, φnℓ = tnℓ,jE
n
j , where

tnℓ,j =





(1− e2iµnb(Qn
0,ℓ−1)

2)Qn
ℓ,j−1(1− (Qn

j,P )
2)

−4iµn(1− e2iµnb(Qn
0,P )

2)
if ℓ ≤ j,

(1− e2iµnb(Qn
0,j−1)

2)Qn
j,ℓ−1(1− (Qn

ℓ,P )
2)

−4iµn(1− e2iµnb(Qn
0,P )

2)
if ℓ ≥ j.

(8.33)

Also, the normal derivative of the n-th Fourier mode un on ΓE satisfies

∂un
∂x

=
(1 + e2iµnb)Qn

0,j−1(1− (Qn
j,p)

2)

4(1− e2iµnb(Qn
0,P )

2)
En

j Yn. (8.34)

Proof The same computation used in the proof of Lemma 8.2 will be applied.
We only provide the proof of the cases for 0 < j < P , as the other case for
j = 0, P can be treated with small modifications. The only difference from the
proof of Lemma 8.2 is that instead of (8.9) we employ the boundary conditions

An +Bn = 0 on ΓW ,

Ane
iµnb +Bne

−iµnb = Ãn + B̃n on ΓE

(8.35)

and

2iµn(Ane
iµnb −Bne

−iµnb)− 2iµn(Ãn − B̃n) = 0 (8.36)

from the 0-th equation.

By solving (8.10), (8.11), (8.12), (8.35) and (8.36) in terms of En
j , we obtain

that

An =
eiµnb(1 − (Qn

j,P )
2)Qn

0,j−1

4iµn(1− e2iµnb(Qn
0,P )

2)
En

j , Bn =
−eiµnb(1− (Qn

j,P )
2)Qn

0,j−1

4iµn(1− e2iµnb(Qn
0,P )

2)
En

j ,

Ãn =
e2iµnb(1 − (Qn

j,P )
2)Qn

0,j−1

4iµn(1− e2iµnb(Qn
0,P )

2)
En

j , B̃n =
−(1− (Qn

j,P )
2)Qn

0,j−1

4iµn(1 − e2iµnb(Qn
0,P )

2)
En

j ,

C̃n =
−(1− e2iµnb(Qn

0,j−1)
2)

4iµn(1− e2iµnb(Qn
0,P )

2)
En

j , D̃n =
(1− e2iµnb(Qn

0,j−1)
2)(Qn

j,P )
2

4iµn(1− e2iµnb(Qn
0,P )

2)
En

j .

Finally, the formulas (8.33) and (8.34) result from substituting them into (8.8)
and

∂un
∂x

= iµn(Ane
iµnb −Bne

−iµnb)Yn,

which completes the proof.

⊓⊔
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In order to study the regularity result of the problem (8.2), properties of
tnℓ,j are required. Let us define for n 6= N ,

tℓ,j = tnℓ,j + tnℓ,j+1 and ∆±
ℓ,j = tℓ,j ± tℓ+1,j

(the formula (8.33) can be extended to j or ℓ = P + 1, saying tnℓ,j = 0 for j or
ℓ = P + 1 since (1 − Qn

P+1,P ) = 0). The following lemma provides estimates

of ∆±
ℓ,j and its proof will be given in the Appendix.

Lemma 8.7 The following inequalities hold,

1√
|aℓ|

|∆+
ℓ,j |

1√
|aj |

≤ C

|µn|2
,

√
|aℓ||∆−

ℓ,j |
1√
|aj |

≤ C

|µn|
.

(8.37)

Also, for the analysis in case of aJ+iµn = 0 for some J , we need to estimate
the analogues to ∆±

ℓ,j for snℓ,j, defined in (8.14). As above, let us define

sℓ,j = snℓ,j + snℓ,j+1 and Σ±
ℓ,j = sℓ,j ± sℓ+1,j.

The same estimates of Σ±
ℓ,j as those of ∆±

ℓ,j are in the following lemma, which
can be proved in the same way as Lemma 8.7.

Lemma 8.8 The following inequalities hold,

1√
|aℓ|

|Σ+
ℓ,j|

1√
|aj |

≤ C

|µn|2
,

√
|aℓ||Σ−

ℓ,j|
1√
|aj |

≤ C

|µn|
.

(8.38)

Lemma 8.9 Let aj be the parameters defined by (3.5) satisfying (3.6). Then
for any Υ ∈ (L2(ΓE))

P+1 the solution (u, Φ) to the problem (8.2) satisfies the
regularity result,

‖u‖H2(Ωb) ≤ Ca(P + 1)‖Υ‖L (8.39)

and
‖Φ‖V2

ΓE

≤ C2
a(P + 1)2‖Υ‖L. (8.40)

If cutoff modes are excluded, the constants Ca for the stability and regularity
estimates are independent of aj and the exponents on (P +1) are halved; that
is the constant in the estimate of u becomes C(P+1)1/2 and that for Φ becomes
C(P + 1).

Proof We first prove (8.40).

Proof of (8.40): Assume that Ξ =
∑∞

n=0 LΥ
nYn with Υn = (γn0 , γ

n
1 , . . . , γ

n
P )

t.

Non-cutoff modes, n 6= N : We note that

|(1 ± e2iµnb(Qn
p,q)

2)(1 ± (Qn
r,s)

2)Qn
c,d| < 4, (8.41)
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for any 0 ≤ p, q, r, s, c, d ≤ P and |1 − e2iµnb(Qn
0,P )

2| is bounded below away
from zero for all n 6= N .

If aj + iµn 6= 0 for 0 ≤ j ≤ P , then Lemma 8.6 shows that the solution φnℓ
can be written as φnℓ =

∑P
j=0 t

n
ℓ,j(LΥ

n)j and a simple computation gives

φnℓ =

P∑

j=0

tnℓ,j

[
1

aj−1
(γnj−1 + γnj ) +

1

aj
(γnj + γnj+1)

]

=

P∑

j=0

tℓ,j
1

aj
(γnj + γnj+1).

(8.42)

Now, the Cauchy-Schwarz inequality and (8.37) show that

1√
|aℓ|

|φnℓ + φnℓ+1| ≤
P∑

j=0

1√
|aℓ|

|∆+
ℓ,j |

1√
|aj |

1√
|aj |

|γnj + γnj+1|

≤




P∑

j=0

∣∣∣∣∣
1√
|aℓ|

∆+
ℓ,j

1√
|aj |

∣∣∣∣∣

2



1/2


P∑

j=0

1

|aj |
|γnj + γnj+1|2




1/2

≤ C

√
P + 1

|µn|2
‖Υn‖L

and hence we obtain that

(λ2n + 1)2‖Φn‖2L ≤ C(P + 1)2
(λ2n + 1)2

|µn|4
‖Υn‖2L ≤ C(P + 1)2‖Υn‖2L. (8.43)

In addition, the same computation as above gives that

√
|aℓ||φnℓ − φnℓ+1| ≤

P∑

j=0

√
|aℓ||∆−

ℓ,j |
1√
|aj |

1√
|aj |

|γnj + γnj+1|

≤




P∑

j=0

∣∣∣∣∣
√
|aℓ|∆−

ℓ,j

1√
|aj |

∣∣∣∣∣

2



1/2


P∑

j=0

1

|aj |
|γnj + γnj+1|2




1/2

≤ C

√
P + 1

|µn|
‖Υn‖L,

which shows that

(λ2n + 1)‖Φn‖2M ≤ C(P + 1)2
λ2n + 1

|µn|2
‖Υn‖2L ≤ C(P + 1)2‖Υn‖2L. (8.44)

Thus, it follows from (8.43) and (8.44) that

(λ2n + 1)2‖Φn‖2L + (λ2n + 1)‖Φn‖2M ≤ C(P + 1)2‖Υn‖2L. (8.45)
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In case when aJ + iµn = 0 for some J , the system of equations (8.29)
breaks into two block diagonal systems. We notice that φnℓ is represented by

φnℓ =





J∑

j=0

tnℓ,j(LΥ
n)j for ℓ ≤ J,

P∑

j=J+1

snℓ,j(LΥ
n)j for ℓ ≥ J + 1,

(8.46)

where tnℓ,j and snℓ,j are defined by (8.33)(with P replaced by J) and (8.14),
respectively. By using Lemma 8.7 and 8.8 as in the argument used above, the
same result as (8.45) can be derived.
Cutoff modes, n = N : In this case, ΦN satisfies (8.32), which is equivalent to

2b−1φN0 e0 +MΦN = LΥN (8.47)

since AN = 0 from the boundary condition on ΓW and AN + BNb = φN0 . By
examining the real and imaginary parts of the inner product of the left hand
side of (8.47) with ΦN , we observe that

2

b
|φN0 |2 + ‖ΦN‖2M ≤ C

∣∣∣∣(
2

b
φN0 e0 +MΦN , ΦN )CP+1

∣∣∣∣ ≤ C‖ΥN‖L‖ΦN‖L

≤ Ca(P + 1)‖ΥN‖L‖ΦN‖M.
(8.48)

The last inequality is the result from Lemma 4.5. Therefore, it follows that

‖ΦN‖M ≤ Ca(P + 1)‖ΥN‖L. (8.49)

Applying Lemma 4.5 again to the above inequality (8.49) yields that

‖ΦN‖L ≤ C2
a(P + 1)2‖ΥN‖L

and hence it is concluded that

(λ2N + 1)2‖ΦN‖2L + (λ2N + 1)‖ΦN‖2M ≤ C4
a(P + 1)4‖ΥN‖2L. (8.50)

Finally, combining (8.45) and (8.50) implies

‖Φ‖V2
ΓE

≤ C2
a(P + 1)2‖Υ‖L,

which completes the proof of (8.40).

Proof of (8.39): We shall estimate gbd = ∂u/∂x− T (u) in H1/2(ΓE),

‖gbd‖H1/2(ΓE) ≤ Ca(P + 1)‖Υ‖L. (8.51)

Once the inequality is established, Lemma 6.4 with (8.51) yields that

‖u‖H2(Ωb) ≤ Ca(P + 1)‖Υ‖L,

which completes the proof of (8.39).
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Now, we are left with proving (8.51). To do this, as done in (8.42) we use
(8.33) with ℓ = 0 and (8.34) for n 6= N and aj + iµn 6= 0 to have

∂un
∂x

− iµnun =

P∑

j=0

Qn
0,j−1(1−Qn

j,j(Q
n
j+1,P )

2)(1 +Qn
j,j)

2(1− e2iµnb(Qn
0,P )

2)

1

aj
(γj + γj+1)Yn.

The Cauchy-Schwarz inequality and (8.18) shows that

‖∂un
∂x

− iµnun‖2L2(ΓE) ≤




P∑

j=0

C|1 +Qn
j,j |

1

|aj |
|γnj + γnj+1|




2

≤




P∑

j=0

C
|1 +Qn

j,j |2
|aj|






P∑

j=0

1

|aj |
|γnj + γnj+1|2


 ≤ C

P + 1

|µn|
‖Υn‖2L

and so we obtain

(λ2n + 1)1/2‖∂un
∂x

− iµnun‖2L2(ΓE) ≤ C(P + 1)‖Υn‖2L. (8.52)

In case when aJ + iµn = 0 for some n and j, since ∂un/∂x and un are affected
by only the first (J + 1) components of Υ , it holds that

(λ2n+1)1/2‖∂un
∂x

− iµnun‖2L2(ΓE) ≤ C(J+1)‖Υn‖2L ≤ C(P +1)‖Υn‖2L. (8.53)

For the cutoff mode, i.e., n = N , we use (8.48) and (8.49) to see

‖∂uN
∂x

‖2L2(ΓE) = |BN |2 =
1

b2
|φN0 |2

≤ Ca(P + 1)‖ΥN‖L‖ΦN‖M ≤ C2
a(P + 1)2‖ΥN‖2L.

(8.54)

Finally by combining (8.52), (8.53) and (8.54) we obtain

‖∂u
∂x

− T (u)‖H1/2(ΓE) ≤ Ca(P + 1)‖Υ‖L,

which completes the proof.
⊓⊔

9 Finite element approximations

Now, we are in a position to discuss the solvability and quasi-optimal conver-
gence of the finite element approximation (uh, Φh) to the solution u and the
auxiliary variables Φ = (φ0, . . . , φP )

t to the variational problem (4.1).
Let Th denote a partition of Ωb with shape-regular meshes and let h repre-

sent the diameter of elements, e.g., h = maxK∈Th
diam(K). By extracting the

boundary nodes on ΓE generated by Th, we define the boundary meshes, which
are denoted by T b

h . Let S̃h denote a subspace of H̃1(Ωb) consisting of piecewise
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polynomial finite element functions and S0
h denote the subset of functions in

S̃h which vanish on ΓW . Also, Gh is analogously defined by a finite element
subspace of H1(ΓE). We assume that f is the trace of a function on ΓW in our
approximation space as the errors associated with boundary quadrature in the
finite element method are well understood. Let Sh be the set of functions in S̃h

which coincide with f on ΓW . Denoting by Vh the set of all elements (uh, Φh)
in Sh × (Gh)

P+1 such that uh = φh,0 on ΓE for Φh = (φh,0, . . . , φh,P )
t and by

V
0
h the set of all elements (uh, Φh) in S0

h × (Gh)
P+1 such that uh = φh,0 on

ΓE , the finite element approximation to (u, Φ) is the function (uh, Φh) ∈ Vh

satisfying
A((uh, Φh), (ξh, Ψh)) = 0 for all (ξh, Ψh) ∈ V

0
h. (9.1)

As mentioned earlier, we will now invoke an argument due to Schatz [33] to
establish the unique solvability and quasi-optimal convergence of finite element
approximations. This requires that the mesh size h satisfies 0 < h < h0 for
a constant h0, which may depend on the stability and regularity estimates of
the elliptic problem studied in Section 8.

In our case, for a given order (np, ne) with P = np + ne and the damp-
ing parameters aj given by (3.5) satisfying (3.6), we already know that the
sesquilinear form A(·, ·) is bounded,

|A((u, Φ), (ξ, Ψ))| ≤ C‖(u, Φ)‖V‖(ξ, Ψ)‖V.

Also, since

|((M − M̄)Φ,Φ)ΓE | =
np−1∑

j=0

2|aj |‖φj − φj+1‖2L2(ΓE) ≤ Cn2
p‖Φ‖2L

due to the fact that |aj | ≤ k for j = 0, . . . , np − 1, it follows from (5.13) that
the sesquilinear form A(·, ·) satisfies the inequality

|A((u, Φ), (u, Φ))| ≥ C1‖(u, Φ)‖2V − C2n
2
p(‖u‖2L2(Ωb)

+ ‖Φ‖2L) (9.2)

in V0 ×V0 for some positive constants C1 and C2. Now, the solvability and
quasi-optimal convergence of finite element approximations are given in the
following theorem. The proof follows the same line as the standard Schatz’s ar-
gument in [33] with the regularity result given in Theorem 8.1 and Lemma 8.9.

Theorem 9.1 Let aj be the parameters defined by (3.5) satisfying (3.6). Then
there exists an h0 > 0 such that for 0 < h < h0, (9.1) has a unique solution
(uh, Φh) ∈ Vh satisfying

‖(u, Φ)− (uh, Φh)‖V ≤ Ch‖(u, Φ)‖V2 . (9.3)

Furthermore, the solution uh satisfies the L2-error estimate

‖u− uh‖L2(Ωb) ≤ Ca(P + 1)h2‖(u, Φ)‖V2 . (9.4)

Here the constant Ca is independent of aj if cutoff modes are not involved.
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Proof Let (e, E) = (u, Φ) − (uh, Φh) ∈ V0 be the error function. Since the
sesquilinear formA(·, ·) is symmetric (not Hermitian), that is,A((u, Φ), (ξ, Ψ)) =
A((ξ̄, Ψ̄), (ū, Φ̄)) for (u, Φ), (ξ, Ψ) ∈ V0, the solution (w, Υ ) ∈ V0 to the dual
problem

A((ξ, Ψ), (w, Υ )) = (ξ, e)Ωb
+ (LΨ,E)ΓE for all (ξ, Ψ) ∈ V0

also satisfies the regularity estimates in Theorem 8.1 and Lemma 8.9. By choos-
ing a linear or bilinear interpolation Υh = (γh,0, . . . , γh,P )

t of Υ = (γ0, . . . , γP )
t,

it is obvious that

‖Υ − Υh‖2L,1 =
P∑

j=0

1

|aj|
‖γj + γj+1 − γh,j − γh,j+1‖2H1(ΓE)

≤ Ch2
P∑

j=0

1

|aj |
‖γj + γj+1‖2H2(ΓE) = Ch2‖Υ‖2L,2

and

‖Υ − Υh‖2M =

P∑

j=0

|aj |‖(γj − γj+1)− (γh,j − γh,j+1)‖2L2(ΓE)

≤ Ch2
P∑

j=0

|aj |‖γj − γj+1‖2H1(ΓE) = Ch2‖Υ‖2M,1,

which reveals that

‖(w, Υ )− (wh, Υh)‖V ≤ Ch‖(w, Υ )‖V2 (9.5)

with a linear or bilinear interpolation wh of w. The approximation property
(9.5) and Lemma 8.9 show that

‖e‖2L2(Ωb)
+ ‖E‖2L ≤ C|A((e, E), (w, Υ ) − (wh, Υh))|

≤ Ch‖(e, E)‖V‖(w, Υ )‖V2

≤ C2
a(P + 1)2h‖(e, E)‖V(‖e‖2L2(Ωb)

+ ‖E‖2L)1/2,
(9.6)

which in turn gives

(‖e‖2L2(Ωb)
+ ‖E‖2L)1/2 ≤ C2

a(P + 1)2h‖(e, E)‖V. (9.7)

From G̊arding’s inequality (9.2) for (e, E),

C1‖(e, E)‖2V − C2n
2
p(‖e‖2L2(Ωb)

+ ‖E‖2L) ≤ |A((e, E), (e, E))|
= |A((e, E), (u, Φ))| ≤ C‖(e, E)‖V‖(u, Φ)‖V,

we see that

C1‖(e, E)‖V − C2n
2
p(‖e‖2L2(Ωb)

+ ‖E‖2L)1/2 ≤ C‖(u, Φ)‖V
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and apply (9.7) to the inequality to obtain

(C1 − C2C
2
an

2
p(P + 1)2h)‖(e, E)‖V ≤ C‖(u, Φ)‖V. (9.8)

For unique solvability of the finite dimensional problem, suppose that f =
0, and so (u, Φ) = 0. Then there exists h0 such that C1−C2C

2
an

2
p(P+1)2h0 > 0.

For such 0 < h < h0, we clearly see that (e, E) = 0, implying the unique
solvability of finite element problem.

Also, the error estimate (9.3) in the energy norm is proved from G̊arding’s
inequality for 0 < h < h0 and Theorem 8.1,

C‖(e, E)‖2
V
≤ |A((e, E), (e, E))| = |A((e, E), (u, Φ) − (uh, Φh))|
≤ Ch‖(e, E)‖V‖(u, Φ)‖V2

with a linear or bilinear interpolation (uh, Φh) of (u, Φ), which leads to (9.3).

For the L2-error estimate, let (we, Υe) ∈ V0 be the solution to the adjoint
problem

A((ξ, Ψ), (we, Υe)) = (ξ, e)Ωb

for all (ξ, Ψ) ∈ V0. Then the same argument used for (9.6) with Theorem 8.1
instead of Lemma 8.9 shows again that

‖e‖2L2(Ωb)
= A((e, E), (we, Υe))

≤ Ch‖(e, E)‖V‖(we, Υe)‖V2

≤ Ca(P + 1)h‖(e, E)‖V‖e‖L2(Ωb),

which implies that

‖e‖L2(Ωb) ≤ Ca(P + 1)h‖(e, E)‖V ≤ Ca(P + 1)h2‖(u, Φ)‖V2

and completes the proof. ⊓⊔

We note that the regularity constant in Lemma 8.9 may increase polyno-
mially (quadratically, but linearly if cutoff modes are excluded) as P grows
and so a smaller mesh h may be required for large P to retain the unique solv-
ability and quasi-optimal convergence, though this has not been encountered
in our experiments. However, when a cutoff modes is present, Ca depending
on maxj=0,...,P {1/|aj|} comes in the regularity constant and it is found in nu-
merical tests that the convergence of finite element approximations is affected
by the smallest parameter used for CRBCs. A discussion on the convergence
with respect to Ca and h will be made in the following section.
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np ρp
1 7.1448E-2
2 1.2794E-3
3 2.2883E-5
4 4.0927E-7
5 7.3199E-9

ne ρe
1 3.6102E-1
2 3.4899E-2
3 3.2613E-3
4 3.0468E-4
5 2.8463E-5

Table 2 Maximal reflection coefficients for propagating modes and evanescent modes re-
sulting from CRBCs with the optimal parameters for k = 20.

10 Numerical experiments

In this section we provide numerical examples that confirm the well-posedness
and convergence theories that were developed in the preceding sections. We
specialize to R2 and take Θ = (0,W ). Note that now

Yn(y) =

√
2

W
cos
(nπ
W
y
)

are transverse eigenfunctions associated with eigenvalues λ2n = (nπ/W )2 for
n ≥ 0. The domain Ωb = (0, b) × (0,W ) is a rectangular region obtained by
truncating the semi-infinite waveguide Ω∞ at x = b (see Figure 2). We set
W = 1.

In the first example, we take k = 20 and choose f corresponding to the
analytic solution of (2.1)-(2.3):

uex(x, y) =
6∑

n=0

1

7
√
2
eiµnxYn(y)

in Ωb with b = 0.2. The exact solution uex is a superposition of seven propagat-
ing modes. In order to apply an efficient CRBC on ΓE , the optimal parameters
discussed in Section 7 are computed on the interval [µ6, k] ≈ [6.6853, 20] by
the Remez algorithm and their distributions for np = 1, 2, . . . , 5 are depicted
in Figure 4. Their maximal reflection coefficients for propagating modes are
presented in Table 2 as well. We compute piecewise bilinear finite element ap-
proximations uh with mesh h = 1/800, 1/1600 and 1/3200 by using the finite
element library deal.II [1]. To see the convergence of approximate solutions,
we measure relative L2- and H1-errors and report the errors in Figure 5. It is
observed that approximate solutions obtained by CRBCs converge as the order
of CRBCs increases until mesh size errors dominate. In particular, when the
mesh size is small enough so that mesh error is ignorable, the relative L2-error
converges at the same convergence rate of the maximal reflection coefficients.

The second example illustrates the effect of CRBCs on evanescent modes.
To do this, we take k = 20 and choose an analytic solution uex including seven
propagating modes and ten evanescent modes

uex(x, y) =
16∑

n=0

1

17
√
2
eiµnxYn(y).
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Fig. 4 Distribution of optimal parameters for np = 1, 2, . . . , 5. The seven red circles repre-
sent the exact propagation frequencies µn and the blue * marks are the optimal parameters
of np = 1 in (a) through np = 5 in (e).
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Fig. 5 Relative L2- and H1-errors for the exact propagating solution

We also assume that the source coming from the left boundary ΓW is close to
the artificial boundary ΓE , e.g., b = 0.1 (W = 1). For this example, we use the
same purely imaginary parameters as those obtained with np = 4 since the
CRBC with np = 4 serves as an accurate absorbing boundary condition for
propagating modes for the meshes h = 1/800, 1/1600 and 1/3200. For the real
parameters responsible for damping evanescent modes, we solve numerically
the min-max problem (6.2) on the interval [µ̃7,Mσ] ≈ [9.1438, 147.0887], where
Mσ is determined by e−Mσb = ρp. The distribution of the real parameters and
the maximal reflection coefficients ρe for each ne are shown in Figure 6 and
Table 2, respectively. The numerical results given in Figure 7 also illustrate
the convergence of solutions with respect to increasing ne. Also, it can be seen
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Fig. 6 Distribution of optimal parameters for ne = 1, 2, . . . , 5. The red circles represent the
exact decay rate of evanescent modes µ̃n and the blue * marks are the optimal parameters
of ne = 1 in (a) through ne = 5 in (e).
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Fig. 7 Relative L2- and H1-errors for the solution including both of propagating modes
and evanescent modes

that the convergence rate of the relative L2-errors coincides with the decay
rate of ρe as long as the mesh is fine enough.

In the third example, the performance of CRBCs for the cutoff mode is
examined. We set k = 6π and choose uex such that the exact solution is
composed of six propagating modes and one cutoff mode:

uex(x, y) =

6∑

n=0

1

7
√
2
eiµnxYn(y)

defined on Ωb with b = 0.2 (W = 1). We increase the number of purely imagi-
nary parameters in the optimal way for propagating modes with np = 1 ∼ 30.
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Fig. 8 Relative L2- and H1-errors for the solution including both of propagating modes
and a cutoff mode satisfying CRBCs with optimal parameters
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Fig. 9 Relative L2-errors for the solution including both of propagating modes and a cutoff
mode satisfying CRBCs with Newman nodes

As indicated in Theorem 6.1, the error of the cutoff mode is controlled by
SP = |b + 2

∑P
j=0 a

−1
j |−1, which is illustrated in Figure 8. We notice that

the optimal parameters used for propagating modes do not seem to be the
best choice. In case that cutoff modes are involved, we may want to try other
choices of parameters, with which CRBCs can reduce SP to much smaller level
while the reflection coefficients from propagating modes are not deteriorated

too much, e.g., Newman’s nodes aj = −ikej/
√
P based on geometric sequences

for j = 0, . . . , P . As we can see Figure 9 of relative L2-errors, the CRBCs
with geometric sequences produce improved results, though it is observed that
the errors obtained from this approach have an irregular behavior for large P .
It can be explained in terms of a small parameter aP for large P . According
to the formula for SP , it seems that one might improve the accuracy of CR-
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(a) Relative L2-errors
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Fig. 10 Relative L2-errors in approximate solutions with h refined according to P for the
solution including both of propagating modes and a cutoff mode satisfying CRBCs with
Newman nodes

BCs at the continuous level by adding a small parameter such as the smallest
parameter aP of the geometric sequences, which reduces SP to the error tol-
erance. However, the cutoff mode on the discrete level does not satisfy the
actual equation on the continuous level

MΦN = −2
∂u

∂x
e0

but solves an equation of a propagating or evanescent mode

(−µ2
N,hL+M)ΦN

h = −2
∂uh
∂x

e0

for some discrete axial frequency µN,h 6= 0 since no discrete eigenvalue of the
transverse Laplace operator will typically coincide with the cutoff transverse
eigenvalue λ2n. When small parameters are used, some components of L become
large but in contrast corresponding components ofM become small. Therefore
in case that h is not small enough that µN,h is big, −µ2

N,hL might be dominant
over the actual cutoff mode system matrix M and so the resulting solution
would not be accurate. The mesh size affected by the small parameter used
for CRBCs can be examined in Figure 9. We observe the minimum errors
at P = 13, 17, 22 for h = 1/800, 1/1600, 1/3200, respectively, in the plot and
they are shifted as h is halved. The ratios of the smallest parameter aP =

−ike−
√
P determining Ca = O(a−1

P ) between two minimum error points are

e
√
13/e

√
17 ≈ 0.5960 and e

√
17/e

√
21 ≈ 0.5670, which indicates that it appears

that Cah in G̊ading’s inequality is the main factor contributing to solvability
and quasi-optimality of the finite element analysis (9.8), and it is necessary
to choose h small enough when cutoff modes exist and aP is small. To see
this observation in more detail, we take a mesh refinement according to P in

such a way that e
√
Ph is a constant Cnewman. For example, Cnewman is taken

to be e
√
10/800 ≈ 0.03 and we do numerical tests with h = Cnewmane

−
√
P for

each P . The results are given in Figure 10(a) with mesh size for each P in
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Fig. 11 Norm of auxiliary variables, (‖Φ‖2
L
+ ‖Φ‖2

M
)1/2.

(b). While relative L2-errors in approximations for optimal parameters with
decreasing h are not improved due to reflection errors, those for Newman’s
nodes decrease asymptotically at the same rate of that of SP , without any
oscillatory behavior as long as meshes are refined according to P .

Aside from this, it is found in Figure 11 that the norm of auxiliary variables,
(‖Φ‖2L+‖Φ‖2M)1/2, of the second and third examples increases with increasing
P as in the stability analysis of Theorem 8.1 but its variance is small. The
independence of the finite element problem from P seems to be caused by the
small variance of the norm with respect to P .

In the last example, we are concerned with finite element convergence as h
approaches zero. To do this, we set k = 100 and take the computational domain
to be Ωb = (0, 0.1)× (0, 1), i.e., b = 0.1 and W = 1, for which the number of
propagating modes is 32. We choose the CRBC of order (np, ne) = (4, 3) for
which ρp = 3.9590× 10−6 and ρe = 5.3492× 10−5 and so reflection errors are
negligible compared with mesh errors. The wave source f on ΓW is given so
that the exact solution is defined by

u(x, y) =

31∑

n=0

1

64
√
2
eiµnxYn(y) +

63∑

n=32

1

64
√
2
e−µ̃nxYn(y)

having 32 propagating modes and 32 evanescent modes. The plot in Figure 12
shows the quasi-optimal convergence of relative L2- and H1- errors in finite
element approximations with (np, ne) = (4, 3).
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Fig. 12 Relative L2- and H1- errors with h = 1/200, 1/400, 1/800, 1/1600, 1/3200.

11 Appendix

Proof (Proof of Lemma 8.7) tℓ,j is given by






(1− e2iµnb(Qn
0,ℓ−1)

2)Qn
ℓ,j−1(1−Qn

j,j(Q
n
j+1,P )

2)

−4iµn(1− e2iµnb(Qn
0,P )

2)
(1 +Qn

j,j) if ℓ ≤ j,

(1− e2iµnb(Qn
0,j−1)

2Qn
j,j)Q

n
j+1,ℓ−1(1− (Qn

ℓ,P )
2)

−4iµn(1− e2iµnb(Qn
0,P )

2)
(1 +Qn

j,j) if ℓ > j.

(11.1)
We first consider ∆±

ℓ,j for ℓ 6= j. A simple computation shows

∆+
ℓ,j =

[
(1− e2iµnb(Qn

0,ℓ−1)
2Qn

ℓ,ℓ)Q
n
ℓ+1,j−1(1 −Qn

j,j(Q
n
j+1,P )

2)

−4iµn(1− e2iµnb(Qn
0,P )

2)

]
(1 +Qn

ℓ,ℓ)(1 +Qn
j,j)

for ℓ < j, and ∆+
ℓ,j = ∆+

j,ℓ by the symmetry of tℓ,j. Analogously, it can be

shown that ∆−
ℓ,j is given by

[
(1 + e2iµnb(Qn

0,ℓ−1)
2Qn

ℓ,ℓ)Q
n
ℓ+1,j−1(1 −Qn

j,j(Q
n
j+1,P )

2)

4iµn(1− e2iµnb(Qn
0,P )

2)

]
(1−Qn

ℓ,ℓ)(1 +Qn
j,j)

for ℓ < j and

[
(1− e2iµnb(Qn

0,j−1)
2Qn

j,j)Q
n
j+1,ℓ−1(1 +Qn

ℓ,ℓ(Q
n
ℓ+1,P )

2)

−4iµn(1− e2iµnb(Qn
0,P )

2)

]
(1−Qn

ℓ,ℓ)(1 +Qn
j,j)
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for ℓ > j. Thus, by (8.18) we have

1√
|aℓ|

|∆+
ℓ,j|

1√
|aj|

≤ C

|iµn|

(
|1 +Qn

ℓ,ℓ|√
|aℓ|

)(
|1 +Qn

j,j |√
|aj |

)
≤ C

|µn|2
, (11.2)

√
|aℓ||∆−

ℓ,j|
1√
|aj|

≤ C

|iµn|
(√

|aℓ||1−Qn
ℓ,ℓ|
)( |1 +Qn

j,j|√
|aj |

)
≤ C

|µn|
. (11.3)

In case of ℓ = j, we see that

∆+
ℓ,ℓ =

[
2(1 + e2iµnb(Qn

0,P )
2/Qn

ℓ,ℓ)− (1 +Qn
ℓ,ℓ)((Q

n
ℓ+1,P )

2 + e2iµnb(Qn
0,ℓ−1)

2)

−4iµn(1 − e2iµnb(Qn
0,P )

2)

]
(1 +Qn

ℓ,ℓ),

(11.4)

∆−
ℓ,ℓ =

[
((Qn

ℓ+1,P )
2 − e2iµnb(Qn

0,ℓ−1)
2)

−4iµn(1− e2iµnb(Qn
0,P )

2)

]
(1−Qn

ℓ,ℓ)(1 +Qn
ℓ,ℓ). (11.5)

Now by the fact that |1 +Qn
ℓ,ℓ|/|aℓ| = 2/|aℓ − iµn| ≤ C/|µn|, (8.18), (11.4)

and (11.5), it is easy to show that

1√
|aℓ|

|∆+
ℓ,ℓ|

1√
|aℓ|

≤ C
|1 +Qn

ℓ,ℓ|
|iµn||aℓ|

≤ C

|µn|2
,

√
|aℓ||∆−

ℓ,ℓ|
1√
|aℓ|

≤ C

|µn|
,

which completes the proof.
⊓⊔
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