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Abstract. In this paper we study fractional Sobolev spaces characterized by a

norm based on eigenfunction expansions. The goal of this paper is twofold. The
first one is to define fractional Sobolev spaces of order −1 ≤ s ≤ 2 equipped

with a norm defined in terms of Neumann eigenfunction expansions. Due to

the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional
Sobolev spaces of order 3/2 ≤ s ≤ 2 characterized by the norm are the spaces

of functions with zero Neumann trace on a boundary. The spaces equipped

with the norm are useful for studying cross-sectional traces of solutions to the
Helmholtz equation in waveguides with a homogeneous Neumann boundary

condition. The second one is to define fractional Sobolev spaces of order −1 ≤
s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth
domain in R2. These spaces are defined by a norm based on series expansions

in terms of eigenfunctions of the vector Laplacian with boundary conditions of
zero tangential component or zero normal component. The spaces defined by

the norm are important for analyzing cross-sectional traces of time-harmonic

electromagnetic fields in perfectly conducting waveguides.

1. Introduction

This paper deals with fractional Sobolev spaces characterized by a norm based on
eigenfunction expansions associated with the scalar Laplacian and the vector Lapla-
cian on bounded and smooth domains. There are many ways to define a norm in
fractional Sobolev spaces, which is equivalent to each other, such as Fourier trans-
formation, Slobodeckij semi-norm or interpolation method [17]. Among others,
the formula of the norm presented in this paper is useful for studying a fractional
Laplace operator [3] and, in particular, for series representations of solutions to
the Helmholtz equation and the Maxwell’s equations posed in waveguides because
their traces on cross-sections of waveguides can be written as series expansions in
terms of cross-sectional eigenfunctions of the scalar Laplacian [2, 13, 14] and the
vector Laplacian [1, 12]. They are also utilized importantly to define the Dirichlet-
to-Neumann operator [11, 18] and the Electric-to-Magnetic operator [12] crucial to
understand radiating solutions for wave propagation problems.

Let Ω be a bounded and smooth domain in Rd, d = 2 or 3. We use usual notations
for Sobolev spaces, for example, L2(Ω) is the set of square integrable functions on
Ω and Hk(Ω) for k positive integer is the subspace of L2(Ω) of functions whose
derivatives up to the k-th order are square integrable as well, with H0(Ω) = L2(Ω).
We denote the L2-inner product on Ω by (·, ·)Ω and the H1-inner product by (·, ·)1,Ω.

In addition, H̃−1(Ω) represents the dual space of H1(Ω) with the pivot space L2(Ω),
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and 〈·, ·〉1,Ω denotes the duality pairing between H̃−1(Ω) and H1(Ω). Fractional
Sobolev spaces Hs(Ω) of order 0 < s < 1 can be defined by the real interpolation
[5, 15]

Hs(Ω) = [H0(Ω), H1(Ω)]s

and their norms are defined by

(1.1) ‖u‖Hs(Ω) = Cs

(∫ ∞
0

K(u, t,H0(Ω), H1(Ω))2t−2s−1dt

)1/2

with Cs =
√

2 sin(πs)/π and

K(u, t,H0(Ω), H1(Ω)) = inf
θ∈H1(Ω)

(‖u− θ‖2H0(Ω) + t2‖θ‖2H1(Ω))
1/2.

Also, H̃s(Ω) for −1 < s < 0 and Hs(Ω) for 1 < s < 2 are defined as

Hs(Ω) = [H1(Ω), H2(Ω)]s−1, 1 < s < 2,

H̃s(Ω) = [H̃−1(Ω), H0(Ω)]s+1, −1 < s < 0

with norms defined analogously to (1.1). For simple presentation, let Hs(Ω) =

Hs(Ω) for s ≥ 0 with H0(Ω) = L2(Ω) and Hs(Ω) = H̃s(Ω) for s < 0.
It is worth beginning with a review on a result in [3] related to the main goal

of this paper but for Dirichlet boundary value problems. For Dirichlet boundary
value problems, the interpolation space

Hs(Ω) :=

 H1
0 (Ω) ∩Hs(Ω), 1 ≤ s ≤ 2,

[L2(Ω), H1
0 (Ω)]s, 0 ≤ s ≤ 1,

[H−1(Ω), L2(Ω)]1+s, −1 ≤ s ≤ 0,

is importantly used for regularity estimates. HereH1
0 (Ω) is the subspace inH1(Ω) of

functions with zero Dirichlet trace on ∂Ω and H−1(Ω) is the dual space of H1
0 (Ω).

In [3], it is shown that for a complete orthonormal basis {Vn}∞n=1 consisting of
Dirichlet eigenfunctions associated with eigenvalues µn, the interpolation space is
identical with a space defined in terms of a norm based on Dirichlet eigenfunction
expansions. More precisely, the space Ḣs(Ω) of functions u =

∑∞
n=1 unVn satisfying

(1.2) ‖u‖Ḣs(Ω) :=

( ∞∑
n=1

(1 + µn)s|un|2
)1/2

<∞

coincides with the interpolation space Hs(Ω) and their norms are equivalent.
The aim of this paper is twofold and it is a development of similar results for

the Neumann Laplacian and the vector Laplacian. The first main result for the
Neumann Laplacian is as follows: let {Yn}∞n=0 be a complete orthonormal basis
consisting of Neumann eigenfunctions pertaining to eigenvalues λn. We introduce
a space Ḣs(Ω) of functions u =

∑∞
n=0 unYn satisfying

(1.3) ‖u‖Ḣs(Ω) :=

( ∞∑
n=0

(1 + λn)s|un|2
)1/2

<∞

for −1 ≤ s ≤ 2. We will show that for −1 ≤ s ≤ 1 the space Ḣs(Ω) is identical

with the interpolation space Hs(Ω), and the norm (1.3) of Ḣs(Ω) coincides with the
norm (1.1) (analogously defined for −1 < s < 0). In case of 1 < s ≤ 2, the analysis

for Ḣs(Ω) is more involved, since Yn has zero Neumann trace on ∂Ω, {Yn}∞n=0 is not
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dense in Hs(Ω) for 3/2 ≤ s ≤ 2 and hence Ḣs(Ω) is a proper subspace of Hs(Ω). In
this case, we restrict Hs(Ω) to a subspace of functions with zero Neumann trace on
∂Ω, then it turns out that two spaces are identical and the norms are equivalent.
More precisely, let H2

n(Ω) be a subspace of functions with zero Neumann trace on
∂Ω in H2(Ω) and define an interpolation space Hsn(Ω) := [H1(Ω), H2

n(Ω)]s−1 for

1 ≤ s ≤ 2. Then we can show that two spaces Hsn(Ω) and Ḣs(Ω) for 1 ≤ s ≤ 2
coincide and the norms are equivalent. The space Hsn(Ω) is well-analyzed in [9, 16],

showing that Hsn(Ω) = Hs(Ω) for 1 ≤ s < 3/2 (and so Hs(Ω) = Ḣs(Ω)) and
Hsn(Ω) = {u ∈ Hs(Ω) : ∂u/∂ν = 0 on ∂Ω} for 3/2 < s ≤ 2. For s = 3/2,

functions in H3/2
n (Ω) has a Neumann trace which vanishes on ∂Ω in a special sense.

The second part is devoted to studying fractional Sobolev spaces of order −1 ≤
s ≤ 1 consisting of vector-valued functions related to the boundary conditions
of zero tangential component or zero normal component in a simply-connected,
bounded and smooth domain Ω ⊂ R2. These spaces can be defined by a norm
based on eigenfunction expansions for the vector Laplacian supplemented with zero
tangential component or zero normal component on ∂Ω for the essential boundary
condition. It can be found in [1, 12] that they play an important role for an
analysis of time-harmonic electromagnetic wave propagation in perfectly conducting
waveguides in R3.

The remaining part of the paper is composed of two sections. In section 2 we
will analyze fractional Sobolev spaces Ḣs(Ω) for −1 ≤ s ≤ 2 based on Neumann
eigenfunction expansions. It will be shown that they coincide with Hs(Ω) for −1 ≤
s ≤ 1 and Hsn(Ω) for 1 ≤ s ≤ 2 and their norms are equivalent. The result
is established thanks to a standard spectral theory [19] of a compact self-adjoint
operator and the real interpolation technique [5, 15]. In section 3 we will study
fractional Sobolev spaces of order −1 ≤ s ≤ 1 for vector-valued functions in Ω.
Here we start with eigenvalue problems of the vector Laplacian and follow the same
lines as those in section 2 to obtain a characterization of the spaces and equivalent
norms based on eigenfunction expansions. In each section, we provide an analysis
for cross-sectional trace operators in waveguides as an application of fractional
Sobolev spaces equipped with the norms based on eigenfunction expansions.

2. Fractional Sobolev spaces for Neumann boundary value problems

In this section we will define fractional Sobolev spaces of order −1 ≤ s ≤ 2 asso-
ciated with Neumann boundary value problems in a bounded and smooth domain
Ω ⊂ Rd, d = 2 or 3. We first consider the Neumann Laplacian in the weak sense
and define a solution operator pertaining to the Neumann Laplacian. Since the
solution operator is continuous, compact and self-adjoint, the spectral theory [19]
comes into play for series expansions of functions in terms of Neumann eigenfunc-
tions. The main idea of this section is one used in [3]. Some of the analysis are
somewhat elementary but we will provide them for completeness.

2.1. Preliminaries. We first introduce L : H1(Ω)→ H−1(Ω) associated with the
Neumann Laplace operator defined by

〈L(u), v〉1,Ω := (∇u,∇v)Ω + (u, v)Ω = (u, v)1,Ω for all u, v ∈ H1(Ω),
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which is continuous from H1(Ω) to H−1(Ω) and satisfies ‖L(u)‖H−1(Ω) = ‖u‖H1(Ω).

The dual space H−1(Ω) of H1(Ω) is equipped with the standard operator norm

(2.1) ‖F‖H−1(Ω) := sup
0 6=φ∈H1(Ω)

〈F, φ〉1,Ω
‖φ‖H1(Ω)

for F ∈ H−1(Ω). Also, due to the Lax-Milgram lemma, we can define the solution
operator

T : H−1(Ω)→ H1(Ω) ⊂ H−1(Ω)

by T (F ) for F ∈ H−1(Ω) satisfying

(2.2) (T (F ), v)1,Ω = 〈F, v〉1,Ω for all v ∈ H1(Ω).

It is obvious that LT = IH−1(Ω) and T L = IH1(Ω).
Now, by using the solution operator T , we can define the inner product (·, ·)−1,Ω

in H−1(Ω) by (F,G)−1,Ω := 〈F, T (G)〉1,Ω for F,G ∈ H−1(Ω). By the definition of
the operator T , it holds that

(2.3) (F,G)−1,Ω = (T (F ), T (G))1,Ω.

The norm of H−1(Ω) induced from the inner product (·, ·)−1,Ω coincides with the
operator norm (2.1),

‖F‖H−1(Ω) = (F, F )
1/2
−1,Ω.

2.2. Orthonormal bases of Neumann eigenfunctions. We consider the Neu-
mann eigenvalue problem of −∆,

(2.4)

−∆Y = λY in Ω,

∂Y

∂ν
= 0 on ∂Ω,

where ν stands for the outward unit normal vector on ∂Ω. It is well-known, e.g. in
[6, 7], that there exist non-negative real eigenvalues λn such that

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

and λn →∞ as n→∞, and eigenfunctions Yn ∈ L2(Ω) associated with λn, which
form an orthonormal basis in L2(Ω).

In the sequel, we discuss complete orthonormal bases consisting of eigenfunctions
of T as an operator defined in three different spaces H−1(Ω), H0(Ω) and H1(Ω).

Lemma 2.1. The operator T is a continuous and compact operator from H−1(Ω)
to H−1(Ω) satisfying

‖T (F )‖H−1(Ω) ≤ ‖F‖H−1(Ω).

Proof. We use the continuous embedding of H1(Ω) into H−1(Ω) and (2.3) to obtain

‖T (F )‖H−1(Ω) ≤ ‖T (F )‖H1(Ω) = ‖F‖H−1(Ω).

Also, since H1(Ω) is compactly embedded in H−1(Ω), T : H−1(Ω) → H−1(Ω) is
compact. �

Lemma 2.2. The linear map T : H−1(Ω)→ H−1(Ω) is self-adjoint with respect to
(·, ·)−1,Ω.
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Proof. The proof proceeds with repeated use of definitions of the inner product in
H−1(Ω) and the operator T as follows: for F,G ∈ H−1(Ω),

(T (F ), G)−1,Ω = 〈T (F ), T (G)〉1,Ω = (T (F ), T (G))Ω

= (T (G), T (F ))Ω = 〈T (G), T (F )〉1,Ω
= (T (G), F )−1,Ω = (F, T (G))−1,Ω,

which shows that T is self-adjoint. �

Lemma 2.3. There exists an orthonormal basis {Ỹn}∞n=0 with respect to (·, ·)−1,Ω

consisting of eigenfunctions of T : H−1(Ω) → H−1(Ω) associated with eigenvalues

ηn := (1 + λn)−1, that is, T (Ỹn) = (1 + λn)−1Ỹn.

Proof. The existence of an orthonormal basis consisting of eigenfunctions Ỹn of T
in H−1(Ω) is established by the Hilbert-Schmidt theorem in the spectral theory [19]
as T is continuous, compact and self-adjoint in H−1(Ω) proved in Lemma 2.1 and
Lemma 2.2.

To show that eigenvalues ηn of T are of the form ηn = (1 + λn)−1, let Ỹn be an
eigenfunction for an eigenvalue ηn. Then it holds that

(T (Ỹn), v)1,Ω = 〈Ỹn, v〉1,Ω for all v ∈ H1(Ω)

by the definition of T . From the fact that T (Ỹn) = ηnỸn ∈ H1(Ω) it follows that

ηn(Ỹn, v)1,Ω = (Ỹn, v)Ω for all v ∈ H1(Ω).

Now it can be written as (∇Ỹn,∇v)Ω = (η−1
n − 1)(Ỹn, v)Ω for all v ∈ H1(Ω),

which reveals that ηn satisfies λn = η−1
n − 1 for an eigenvalue λn associated for the

Neumann eigenfunction Ỹn. �

Lemma 2.4. Let Yn = (1 + λn)−1/2Ỹn. Then {Yn}∞n=0 is a complete orthonormal
basis of H0(Ω) with respect to the L2-inner product (·, ·)Ω consisting of eigenfunc-
tions of T : H0(Ω)→ H0(Ω).

Proof. We first observe that

δm,n = (Ỹm, Ỹn)−1,Ω = 〈Ỹm, T (Ỹn)〉1,Ω
= 〈Ỹm, (1 + λn)−1Ỹn〉1,Ω = (1 + λn)−1(Ỹm, Ỹn)Ω,

from which it follows that Ỹn is orthogonal with respect to the inner product (·, ·)Ω

and ‖Ỹn‖H0(Ω) = (1 + λn)1/2. Since Yn is an eigenfunction in H0(Ω) of T and
{Yn}∞n=0 has all eigenfunctions of the continuous, compact and self-adjoint operator
T : H0(Ω)→ H0(Ω), {Yn}∞n=0 is a complete orthonormal basis of H0(Ω). �

Lemma 2.5. Let Ŷn = (1 + λn)−1/2Yn. Then {Ŷn}∞n=0 is a complete orthonormal
basis of H1(Ω) with respect to the H1-inner product (·, ·)1,Ω consisting of eigenfunc-
tions of T : H1(Ω)→ H1(Ω).

Proof. It is clear that Ŷn are eigenfunctions of T in H1(Ω). Also, Ŷn are orthonor-
mal with respect to (·, ·)1,Ω. In fact, by utilizing (2.3) we are led to

(Ŷm, Ŷn)1,Ω = (T (Ỹm), T (Ỹn))1,Ω = (Ỹm, Ỹn)−1,Ω = δm,n.

For completeness of {Ŷn}∞n=0 in H1(Ω), we choose any u ∈ H1(Ω) and suppose that

(Ŷn, u)1,Ω = 0 for all n = 0, 1, 2, . . . .
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Then by the definition of T , we have

0 = (Ŷn, u)1,Ω = (1 + λn)(T (Ŷn), u)1,Ω = (1 + λn)〈Ŷn, u〉1,Ω
= (1 + λn)(Ŷn, u)Ω = (1 + λn)1/2(Yn, u)Ω.

Since {Yn}∞n=0 is dense in H0(Ω), it follows that u = 0, which establishes the
completeness of {Yn}∞n=0 in H1(Ω). �

2.3. Fractional Sobolev spaces Ḣs(Ω) of order −1 ≤ s ≤ 1. In this subsection,

we study fractional Sobolev spaces Ḣs(Ω) of order −1 ≤ s ≤ 1 characterized by
a norm based on series expansions in terms of Neumann eigenfunctions in H0(Ω).
We recall

Ḣs(Ω) = {u =

∞∑
n=0

unYn : ‖u‖Ḣs(Ω) <∞}

with the definition (1.3) of ‖·‖Ḣs(Ω). We note that fractional Sobolev spaces Ḣs(Ω)

of order−1 ≤ s ≤ 2 can be interpreted as interpolation spaces. The following lemma
can be proved as in [5, Appendix B].

Lemma 2.6. The fractional Sobolev space Ḣs(Ω) is interpreted as an interpolation
space

Ḣs(Ω) =


[Ḣ1(Ω), Ḣ2(Ω)]s−1 1 < s < 2,

[Ḣ0(Ω), Ḣ1(Ω)]s 0 < s < 1,

[Ḣ−1(Ω), Ḣ0(Ω)]s+1 −1 < s < 0.

The main result of this subsection is that Ḣs(Ω) is identical with the interpolation
space Hs(Ω) and the norm (1.3) coincides with the norm (1.1) (with analogous one
for −1 < s < 0). We begin by comparing these spaces of order s = −1, 0, 1. Clearly,
every F ∈ H0(Ω) has a series representation in terms of the orthonormal basis Yn
in H0(Ω), F =

∑∞
n=0(F, Yn)ΩYn and the norm in H0(Ω) is given by Parseval’s

identity

‖F‖2H0 =

∞∑
n=0

|(F, Yn)Ω|2 = ‖F‖2Ḣ0(Ω)
,

which means that Ḣ0(Ω) = H0(Ω) with the same norm.

The first lemma is concerned with the identification of Ḣ−1(Ω) with the Sobolev
space H−1(Ω).

Lemma 2.7. It holds that Ḣ−1(Ω) = H−1(Ω). In addition, for F ∈ H−1(Ω),

(2.5) ‖F‖Ḣ−1(Ω) = ‖F‖H−1(Ω).

Proof. For F ∈ Ḣ−1(Ω) with F =
∑∞
n=0 FnYn, the relation Yn = (1 + λn)−1/2Ỹn

leads to a series expansion of F

(2.6) F =

∞∑
n=0

(1 + λn)−1/2FnỸn

in terms of the orthonormal basis in H−1(Ω). Since ‖F‖2Ḣ−1(Ω)
=
∑∞
n=0(1 +

λn)−1|Fn|2 <∞, the series (2.6) converges in H−1(Ω) and hence F ∈ H−1(Ω).
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Conversely, since {Ỹn}∞n=0 is a complete orthonormal basis of H−1(Ω), every
F ∈ H−1(Ω) has a series representation

(2.7) F =

∞∑
n=0

(F, Ỹn)−1,ΩỸn

converging in H−1(Ω) and its norm is evaluated by Parseval’s identity,

(2.8) ‖F‖2H−1(Ω) =

∞∑
n=0

|(F, Ỹn)−1,Ω|2.

Now, we note that by the definition of the H−1-inner product (·, ·)−1,Ω

(2.9)
(F, Ỹn)−1,Ω = 〈F, T (Ỹn)〉1,Ω

= 〈F, (1 + λn)−1Ỹn〉1,Ω = (1 + λn)−1/2〈F, Yn〉1,Ω.

Noting that Ỹn = (1 + λn)1/2Yn, we substitute (2.9) into (2.7) and (2.8) to show
that F =

∑∞
n=0〈F, Yn〉1,ΩYn and

‖F‖2Ḣ−1(Ω)
=

∞∑
n=0

(1 + λn)−1|〈F, Yn〉1,Ω|2 = ‖F‖2H−1(Ω) <∞,

which implies F ∈ Ḣ−1(Ω) and (2.5). �

The next lemma is the result for H1(Ω) analogous to the preceding lemma.

Lemma 2.8. It holds that Ḣ1(Ω) = H1(Ω). In addition, for F ∈ H1(Ω),

(2.10) ‖F‖Ḣ1(Ω) = ‖F‖H1(Ω).

Proof. For F ∈ Ḣ1(Ω) with F =
∑∞
n=0 FnYn, the relation Yn = (1 + λn)1/2Ŷn

allows us to have a series expansion of F

(2.11) F =

∞∑
n=0

(1 + λn)1/2FnŶn

in terms of the orthonormal basis inH1(Ω). Since ‖F‖2Ḣ1(Ω)
=
∑∞
n=0(1+λn)|Fn|2 <

∞, the series (2.11) converges in H1(Ω) and hence F ∈ H1(Ω).

Conversely, since {Ŷn}∞n=0 is a complete orthonormal basis of H1(Ω), every F ∈
H1(Ω) has a series representation

(2.12) F =

∞∑
n=0

(F, Ŷn)1,ΩŶn

converging in H1(Ω) and its norm is given by

(2.13) ‖F‖2H1(Ω) =

∞∑
n=0

|(F, Ŷn)1,Ω|2.

A simple computation by using the definition of T reveals that

(2.14) (F, Ŷn)1,Ω = (F, (1 + λn)1/2T (Yn))1,Ω = (1 + λn)1/2(F, Yn)Ω.
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Since Yn = (1 + λn)1/2Ŷn, substituting (2.14) into (2.12) and (2.13) results in the
eigenfunction expansion F =

∑∞
n=0(F, Yn)ΩYn and

‖F‖2Ḣ1(Ω)
=

∞∑
n=0

(1 + λn)|(F, Yn)Ω|2 = ‖F‖2H1(Ω) <∞.

which shows F ∈ Ḣ1(Ω) and (2.10). �

Now, we are ready to establish that Ḣs(Ω) = Hs(Ω) and two norms coincide for
−1 ≤ s ≤ 1.

Theorem 2.9. It holds that Ḣs(Ω) = Hs(Ω) for −1 ≤ s ≤ 1. Furthermore, for
u ∈ Hs(Ω),

‖u‖Ḣs(Ω) = ‖u‖Hs(Ω).

Proof. Lemma 2.7 shows that Ḣ−1(Ω) = H−1(Ω) and two norms coincide. Also

Lemma 2.8 gives the same result for Ḣ1(Ω) and H1(Ω). It is obvious that Ḣ0(Ω) =
H0(Ω) and two norms ‖ · ‖Ḣ0(Ω) and ‖ · ‖H0(Ω) are identical. Consequently, the

result for −1 < s < 1 is obtained by the real interpolation technique [15],

Ḣs(Ω) = [Ḣ−1(Ω), Ḣ0(Ω)]1+s = [H−1(Ω), H0(Ω)]1+s = Hs(Ω)

for −1 < s < 0, and

Ḣs(Ω) = [Ḣ0(Ω), Ḣ1(Ω)]s = [H0(Ω), H1(Ω)]s = Hs(Ω)

for 0 < s < 1. �

2.4. Fractional Sobolev spaces Ḣs(Ω) of order 1 < s ≤ 2. Since Yn has zero
Neumann trace on ∂Ω, {Yn}∞n=0 is not dense in H2(Ω). In order to study the spaces
spanned by Yn, we recall the space H2

n(Ω) that is a closed subspace of functions in
H2(Ω) with zero Neumann trace on ∂Ω,

H2
n(Ω) = {u ∈ H2(Ω) : ∂u/∂ν = 0 on ∂Ω},

and Hsn(Ω) = [H1(Ω), H2
n(Ω)]s−1 for 1 < s < 2.

Remark 2.10. It is shown in [9, 16] that Hsn(Ω) = Hs(Ω) for 1 ≤ s < 3/2,
however, Hsn(Ω) for 3/2 < s ≤ 2 is the subspace of functions in Hs(Ω) with zero
Neumann trace on ∂Ω. Since Hsn(Ω) for 3/2 < s ≤ 2 is closed in Hs(Ω), two norms
‖ · ‖Hs

n(Ω) and ‖ · ‖Hs(Ω) are equivalent to each other. For s = 3/2, the space Hsn(Ω)

is the set of functions u in Hs(Ω) characterized by the condition ρ(x)−1/2|∇u| ∈
L2(Ω), where ρ(x) is the distance from x to the boundary ∂Ω, but we remark that

H3/2
n (Ω) is not closed in H3/2(Ω) (see also [15]).

Lemma 2.11. It holds that Ḣ2(Ω) = H2
n(Ω) with equivalent norms.

Proof. Noting that for u ∈ H2
n(Ω) and v ∈ H1(Ω),

|〈L(u), v〉1,Ω| = |(∇u,∇v)Ω + (u, v)Ω| = |(−∆u+ u, v)Ω| ≤ C‖u‖H2(Ω)‖v‖H0(Ω)

due to zero Neumann trace of u on ∂Ω, we see that L : H2
n(Ω)→ H0(Ω) is bounded

and

(2.15) ‖L(u)‖H0(Ω) ≤ C‖u‖H2(Ω).
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Now, we shall show that ‖L(u)‖H0(Ω) = ‖u‖Ḣ2(Ω), from which together with (2.15)

it follows that

(2.16) ‖u‖Ḣ2(Ω) ≤ C‖u‖H2(Ω).

Let u =
∑∞
n=0 unYn ∈ H2

n(Ω) (converging at least in H0(Ω)). Since L(u) is in
H0(Ω), we can find a series expansion of L(u) in terms of the orthonormal basis
{Yn}∞n=0 in H0(Ω). To do this, we observe that due to zero Neumann trace of Yn
on ∂Ω

(L(u), Yn)Ω = (∇u,∇Yn)Ω + (u, Yn)Ω = −(u,∆Yn)Ω + (u, Yn)Ω = (λn + 1)un,

which implies that L(u) =
∑∞
n=0(1+λn)unYn. Therefore we can obtain the desired

equality

‖L(u)‖H0(Ω) = ‖
∞∑
n=0

(1 + λn)unYn‖H0(Ω) = ‖u‖Ḣ2(Ω).

Conversely, for u ∈ Ḣ2(Ω) having the series expansion, u =
∑∞
n=0 unYn, satisfy-

ing ‖u‖2Ḣ2(Ω)
=
∑∞
n=0(1+λn)2|un|2 <∞, we first assert that−∆u =

∑∞
n=0 λnunYn.

Indeed, let G :=
∑∞
n=0 λnunYn, which is in H0(Ω). Since the partial sum Um =∑m

n=0 unYn converges to u in H0(Ω) and −∆Um converges to G in H0(Ω), it can
be shown that −∆u = G. Now the regularity theory for the Neumann boundary
value problem, e.g., [10] shows that

(2.17) ‖u‖H2(Ω) ≤ C‖ −∆u+ u‖H0(Ω) = C‖u‖Ḣ2(Ω).

As a consequence, two inequalities (2.16) and (2.17) establish the equivalence of

two norms and show that two spaces H2
n(Ω) and Ḣ2(Ω) are identical. �

Theorem 2.12. For 1 ≤ s ≤ 2, it holds that Ḣs(Ω) = Hsn(Ω) with equivalent
norms.

Proof. By Lemma 2.8 and Lemma 2.11, we have Ḣ1(Ω) = H1(Ω) and Ḣ2(Ω) =
H2
n(Ω) with equivalent norms. The real interpolation completes to show that

Ḣs(Ω) = Hsn(Ω) for 1 < s < 2 and their norms are equivalent. �

2.5. Application to a cross-sectional trace estimate in waveguides. Let Ω̂
be a bounded domain in Rd for d = 2 or 3 such that with a bounded and smooth
Ω ⊂ Rd−1 and a constant L > 0,

Ω̂ ∩ {(x, y) ∈ R× Rd−1 : x > −L} = (−L, 0)× Ω

and ∂Ω̂∩{x < 0} is smooth, which is a typical geometry of semi-infinite waveguides

truncated at x = 0. We denote Γ0 := {0} × Ω and Γb := ∂Ω̂ \ Γ̄0 for mutually

disjoint parts of the boundary of Ω̂. In this subsection, we examine a cross-sectional
trace estimate of functions whose normal derivative vanishes on Γb. The cross-
sectional trace estimate in terms of the norm based on eigenfunction expansions is of
importance in analyses of acoustic and polarized electromagnetic wave propagations

in waveguides [2, 11]. We introduce a trace operator γ(u) = u|Γ0
for u ∈ Hs(Ω̂)

with 1/2 < s ≤ 2.

Theorem 2.13. If u ∈ Hs(Ω̂) for 1/2 < s ≤ 2 satisfies ∂u/∂ν = 0 on Γb, then

γ(u) is in Ḣs−1/2
n (Γ0) and satisfies

(2.18) ‖γ(u)‖Ḣs−1/2(Γ0) ≤ C‖u‖Hs(Ω̂).
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Proof. Since Hs−1/2(Γ0) = Ḣs−1/2(Γ0) for 1/2 < s < 2 as seen in Theorem 2.9,
Remark 2.10 and Theorem 2.12, (2.18) is a standard trace inequality. So we are
left with only the case of s = 2.

For s = 2, we note that Ḣ3/2(Γ0) = H3/2
n (Γ0) is a strict subspace of H3/2(Γ0)

with a finer topology. In this case we prove directly the trace inequality by following

the idea as that used in [17]. To do this, let ΩE = Ω̂ ∪ Γ0 ∪ Ω̂∗, where Ω̂∗ is the

domain obtained by reflecting Ω̂ in the y-space and we define an extension operator

E : H2
n(Ω̂)→ H2

n(ΩE) by E(u) = ũ for u ∈ H2
n(Ω̂):

ũ(x, y) =


u(x, y) for (x, y) ∈ Ω̂,

(a1u(−x, y) + a2u(−2x, y))η(x) for (x, y) ∈ Ω̂∗ and 0 < x < L

0 for (x, y) ∈ Ω̂∗ and x > L

with a1 +a2 = 1 and −a1−2a2 = 1, where η is a smooth cutoff function that is one
near Γ0 and zero for x > L/2. Clearly, the extension ũ is in H2

n(ΩE) and satisfies
‖ũ‖H2(ΩE) ≤ C‖u‖H2(Ω̂).

Now, we will show that for v ∈ C∞n (ΩE)

(2.19) ‖γ(v)‖Ḣ3/2(Γ0) ≤ C‖v‖H2(ΩE),

where C∞n (ΩE) is a subspace of smooth functions u in C∞(ΩE) such that ∂v/∂ν = 0
on ∂ΩE . Once we have it, the desired trace inequality immediately follows from the
density of C∞n (ΩE) in H2

n(ΩE) (see Appendix) and the bounded extension operator

E : H2
n(Ω̂)→ H2

n(ΩE). To prove (2.19) let v ∈ C∞n (ΩE). By using a cutoff function
χ of x which is one for |x| < L/2 and vanishes for |x| > L, we have the zero extension
ṽ of χv|(−L,L)×Ω to Ω∞ := R×Ω such that ‖ṽ‖H2(Ω∞) ≤ C‖v‖H2(ΩE). Also, it has
a series representation

ṽ(x, y) =

∞∑
n=0

ṽn(x)Yn(y) =

∞∑
n=0

(∫
R
F(ṽn)(ξ)e−iξxdξ

)
Yn(y)

for (x, y) ∈ R × Ω, where F(ṽn) is a Fourier transform of ṽn. Here we note that
the derivative of ṽ with respect to x can be interchanged with the infinite sum.
Indeed, let ψ(x) = (∂ṽ/∂x(x, ·), Yn)Ω be the n-th Fourier coefficient of ∂ṽ/∂x. For
any φ(x) ∈ C∞0 (R), by integration by parts∫

R
ψ(x)φ(x)dx = −

∫
R

∫
Ω

ṽ(x, y)
dφ

dx
(x)Yn(y)dydx

= −
∫
R
ṽn(x)

dφ

dx
(x)dx =

∫
R

dṽn
dx

(x)φ(x)dx,

which shows that ψ = dṽn/dx and hence

∂ṽ

∂x
(x, y) =

∞∑
n=0

dṽn
dx

(x)Yn(y).

The same argument gives the same result for the second derivative of ṽ with respect
to x,

∂2ṽ

∂x2
(x, y) =

∞∑
n=0

d2ṽn
dx2

(x)Yn(y).
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Therefore, by Fubini’s theorem and the monotone convergence theorem together
with Theorem 2.9 and 2.12 we can show that
(2.20)

‖ṽ‖2H2(Ω∞) =

∫
R
‖ṽ(x, ·)‖2H2(Ω) + ‖∂ṽ

∂x
(x, ·)‖2H1(Ω) + ‖∂

2ṽ

∂x2
(x, ·)‖2H0(Ω)dx

=

∫
R

∞∑
n=0

(1 + λn)2|ṽn(x)|2 + (1 + λn)||dṽn
dx

(x)|2 + |d
2ṽn
dx2

(x)|2dx

=

∞∑
n=0

∫
R

(
(1 + λn)2 + (1 + λn)|ξ|2 + |ξ|4

)
|F(ṽn)(ξ)|2dξ

≥ 1

2

∞∑
n=0

∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ.

Now, we shall examine the n-th coefficient of γ(v), which is given by

(γ(v))n =

∫
R
F(ṽn)(ξ)dξ

=

∫
R

(1 + λn + |ξ|2)−1(1 + λn + |ξ|2)F(ṽn)(ξ)dξ.

We apply the Cauchy-Schwarz inequality to show that

|(γ(v))n|2 ≤
∫
R

(1 + λn + |ξ|2)−2dξ

∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ.

Since a change of variables leads to∫
R

(1 + λn + |ξ|2)−2dξ =
1

(1 + λn)2

∫
R

(
1 +

(
ξ√

1 + λn

)2
)−2

dξ

= (1 + λn)−3/2

∫
R

(1 + t2)−2dt,

we have that

(1 + λn)3/2|(γ(v))n|2 ≤ C
∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ

and hence by (2.20)

‖γ(v)‖2Ḣ3/2(Γ0)
≤ C

∞∑
n=0

∫
R

(1 + λn + |ξ|2)2|F(ṽn)(ξ)|2dξ

≤ C‖ṽ‖2H2(Ω∞) ≤ C‖v‖
2
H2(ΩE),

which completes the proof. �

3. Fractional Sobolev spaces of vector-valued functions related to
zero tangential component or zero normal component

In this section, for a simply-connected, bounded and smooth domain Ω ⊂ R2, we
study fractional Sobolev spaces of vector-valued functions related to the boundary
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condition of zero tangential component or zero normal component in Ω. To do this,
denoting H1(Ω) = (H1(Ω))2, we define

H1
T (Ω) := {u ∈ H1(Ω) : ν · u = 0 on ∂Ω},

H1
N (Ω) := {u ∈ H1(Ω) : ν⊥ · u = 0 on ∂Ω},

where ν⊥ = Rν with R rotation by −90◦. Hereafter we will use boldface to
represent vector-valued functions or operators/spaces of vector-valued functions.
Let H−1

T (Ω) and H−1
N (Ω) be the dual spaces of H1

T (Ω) and H1
N (Ω) with the pivot

space L2(Ω), respectively. Their duality pairings are denoted by 〈·, ·〉1,T,Ω and

〈·, ·〉1,N,Ω. The operator norms in H1
∗(Ω) are given by

(3.1) ‖F‖H−1
∗ (Ω) := sup

0 6=v∈H1
∗(Ω)

|〈F, v〉1,∗,Ω|
‖v‖H1(Ω)

,

where ∗ stands for T or N . We define intermediate spaces by the interpolation

Hs
∗(Ω) :=

{
[L2(Ω), H1

∗(Ω)]s 0 ≤ s ≤ 1,

[H−1
∗ (Ω), L2(Ω)]1+s −1 ≤ s ≤ 0,

with ∗ = T or ∗ = N . The duality pairing between H−s∗ (Ω) and Hs
∗(Ω) is denoted

by 〈·, ·〉s,∗,Ω. We will characterize the interpolation spaces in terms of a norm
based on series expansions of eigenfunctions with zero normal component or zero
tangential component of the vector Laplacian.

3.1. Eigenvalue problems of the vector Laplacian. Let us consider the eigen-
value problems for the vector Laplacian defined in Ω ⊂ R2,

(3.2)
−∇∇ · u + ∇⊥∇⊥ · u = ηu in Ω,

ν · u = 0 and ∇⊥ · u = 0 on ∂Ω,

or

(3.3)
−∇∇ · u + ∇⊥∇⊥ · u = ηu in Ω,

ν⊥ · u = 0 and ∇ · u = 0 on ∂Ω,

where ∇⊥· and ∇⊥ are scalar- and vector-curl operators defined by

∇⊥ · u = ∇ ·Ru and ∇⊥u = R∇u,

respectively. The first eigenvalue problem (3.2) seeks for eigenfunctions with zero
normal component. In contrast, the second eigenvalue problem (3.3) treats eigen-
functions with zero tangential component. These two types of eigenfunctions play
an essential role in studying a series representation of time-harmonic electromag-
netic fields in perfectly conducting waveguides. In particular, eigenfunctions with
zero normal/tangential component are useful to represent cross-sectional traces of
electric/magnetic fields in a series form, respectively [12].

We note that weak solutions to the problem (3.2) and (3.3) belong to the spaces
H(curl,Ω) ∩H0(div,Ω) and H0(curl,Ω) ∩H(div,Ω), respectively. Since Ω is as-
sumed to be smooth, a regularity theory, e.g., in [8] shows that

H1
T (Ω) = H(curl,Ω) ∩H0(div,Ω) and H1

N (Ω) = H0(curl,Ω) ∩H(div,Ω)

with equivalent norms in the space identities. Thus the spaces H1
T (Ω) and H1

N (Ω)
can be equipped with norm

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇⊥ · u‖2L2(Ω) + ‖∇ · u‖2L2(Ω)
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for u ∈ H1
T (Ω) or H1

N (Ω).

3.2. The space Hs
T (Ω) for −1 ≤ s ≤ 1. The eigenvalue problem (3.2) is reformu-

lated to a weak form in the solution space H1
T (Ω): finding η ∈ R and u ∈ H1

T (Ω)
such that

(3.4) A(u, v) := (∇ ·u,∇ · v)Ω + (∇⊥ ·u,∇⊥ · v)Ω = η(u, v)Ω for all v ∈ H1
T (Ω).

By the Helmholtz decomposition [8], eigenfunctions u and test functions v in H1
T (Ω)

can be decomposed into

u = ∇Y + ∇⊥V and v = ∇Ψ + ∇⊥Φ,

where V,Φ ∈ H1
0 (Ω) and Y,Ψ ∈ H1(Ω) with ∂Y/∂ν, ∂Ψ/∂ν = 0 on ∂Ω.

Now, noting that the set of Dirichlet eigenfunctions Vn for eigenvalues µn, n =
1, 2, . . . is dense in H1

0 (Ω) and L2(Ω) as shown in [3], by taking test functions

v = ∇⊥Vn, we see that

(−∆V, Vn)Ω = η(V, Vn)Ω

from (3.4), which implies that V is a Dirichlet eigenfunction and η is a Dirichlet

eigenvalue. In such a case, since A(∇⊥V,∇Ψ) = 0 and (∇⊥V,∇Ψ)Ω = 0 for all

Ψ ∈ H1(Ω), we have A(∇⊥V, v) = η(∇⊥V, v)Ω for all v ∈ H1
T (Ω), which shows

that ∇⊥Vn and µn for n ≥ 1 are eigenpairs of the eigenvalue problem (3.4).
On the other hand, at this time we use the fact that the set of Neumann eigen-

functions Yn for eigenvalues λn, n = 0, 1, . . . is dense in H1(Ω) and L2(Ω) shown
by Lemma 2.5 and Lemma 2.4 and take test functions v = ∇Yn to obtain that

(−∆Y, Yn)Ω = η(Y, Yn)Ω,

from which it then follows that Y is a Neumann eigenfunction and η is a Neumann
eigenvalue except for η = 0. Since A(∇Y,∇⊥Φ) = 0 and (∇Y,∇⊥Φ)Ω = 0 for

Φ ∈ H1
0 (Ω), it can be shown that ∇⊥Yn and λn for n ≥ 1 are eigenpairs of the

eigenvalue problem (3.4). As a conclusion, we have the following proposition.

Proposition 3.1. The complete set of eigenvalues of the problem (3.3) is given
by {λn}∞n=1 ∪ {µn}∞n=1, the set of non-zero Neumann eigenvalues and Dirichlet
eigenvalues of the Laplacian, and their corresponding eigenfunctions are {∇Yn}∞n=1

and {∇⊥Vn}∞n=1.

We can develop the same theory as done for the Neumann Laplacian in the
preceding section. We start by defining LT : H1

T (Ω) → H−1
T (Ω) pertaining to the

weak vector Laplacian by

〈LT (u), v〉1,T,Ω = (∇ · u,∇ · v)Ω + (∇⊥ · u,∇⊥ · v)Ω + (u, v)Ω := (u, v)1,Ω

for u, v ∈ H1
T (Ω). For the sake of simplicity, we abuse the notation (·, ·)1,Ω for the

H1(Ω)-inner product of vector-valued functions but it can be clearly distinguished
from the H1(Ω)-inner product of scalar-valued functions from context. Due to
the Lax-Milgram lemma, its inverse operator TT : H−1

T (Ω) → H1
T (Ω) is also well-

defined by

(TT (F), v)1,Ω = 〈F, v〉1,T,Ω for all v ∈ H1
T (Ω)

for F ∈ H−1
T (Ω). By using the inverse operator TT , the inner product (·, ·)−1,T,Ω

in H−1
T (Ω) can be defined as

(F,G)−1,T,Ω := 〈F,TT (G)〉1,T,Ω for F,G ∈ H−1
T (Ω),
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which induces the same norm as the operator norm (3.1) and makes TT : H−1
T (Ω)→

H1
T (Ω) an isometry,

(F,G)−1,T,Ω = (TT (F),TT (G))1,Ω for all F,G ∈ H−1
T (Ω).

Then TT : H−1
T (Ω)→ H1

T (Ω) ⊂ H−1
T (Ω) and TT : L2(Ω)→ H1

T (Ω) ⊂ L2(Ω) are

continuous, compact and self-adjoint operators in H−1
T (Ω) and L2(Ω), respectively.

In addition, {(1 + λn)−1, (1 + µn)−1}∞n=1 is the complete set of eigenvalues of TT
for eigenfunctions ∇Yn and ∇⊥Vn. It brings the following result.

Lemma 3.2. Let Yn be orthonormal Neumann eigenfunctions in L2(Ω) of the
Laplacian for eigenvalues λn and Vn be orthonormal Dirichlet eigenfunctions in

L2(Ω) of the Laplacian for eigenvalues µn. We also denote Y n = λ
−1/2
n ∇Yn and

V ⊥n = µ
−1/2
n ∇⊥Vn for n = 1, 2, . . ..

(1) The set {Y n,V
⊥
n }∞n=1 is a complete orthonormal basis consisting of eigen-

functions to the problem (3.2) for L2(Ω).

(2) The set {(1 + λn)−1/2Y n, (1 + µn)−1/2V ⊥n }∞n=1 is a complete orthonormal
basis consisting of eigenfunctions to the problem (3.2) for H1

T (Ω).

(3) The set {(1+λn)1/2Y n, (1+µn)1/2V ⊥n }∞n=1 is a complete orthonormal basis
consisting of eigenfunctions to the problem (3.2) for H−1

T (Ω).

Proof. Every assertion in this lemma except for normalization of eigenfunctions can
be proved by the same way as in the previous section based on the spectral theory.
Normalization is also easily verified by computing norms of eigenfunctions,

‖∇Yn‖2L2(Ω) = (∇Yn,∇Yn)Ω = (−∆Yn, Yn)Ω = λn,

‖∇Yn‖2H1(Ω) = (∆Yn,∆Yn)Ω + (∇Yn,∇Yn)Ω = λn(1 + λn),

‖∇Yn‖2H−1
T (Ω)

= ‖TT (∇Yn)‖2H1(Ω) = λn(1 + λn)−1

and the same calculations for Vn with λn replaced by µn. �

Theorem 3.3. The interpolation space Hs
T (Ω), −1 ≤ s ≤ 1, is the space of func-

tions F =
∑∞
n=1AnYn +BnV

⊥
n satisfying

‖F‖2Hs
T (Ω) :=

∞∑
n=1

(1 + λn)s|An|2 + (1 + µn)s|Bn|2 <∞.

Proof. The case for s = 0 is obvious since Yn and V⊥n form an orthonormal basis

of L2(Ω). For s = −1, let Ỹn = (1 + λn)1/2Yn and Ṽ
⊥
n = (1 + µn)1/2V⊥n . Since

{Ỹn, Ṽ
⊥
n }∞n=1 is an orthonormal basis of H−1

T (Ω) by Lemma 3.2, any F ∈ H−1
T (Ω)

can be written as

F =

∞∑
n=1

ÃnỸn + B̃nṼ
⊥
n .

Denoting An = (λn + 1)1/2Ãn and Bn = (µn + 1)1/2B̃n, it can be shown that

F =

∞∑
n=1

AnYn +BnV
⊥
n
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and

‖F‖2
H−1

T (Ω)
=

∞∑
n=0

|Ãn|2 + |B̃n|2 =

∞∑
n=0

(λn + 1)−1|An|2 + (µn + 1)−1|Bn|2 <∞.

Similarly, by using the orthonormal basis {(1 + λn)1/2Yn, (1 + µn)1/2V⊥n }∞n=1 of
H1
T (Ω) we can derive the result for s = 1, that is H1

T (Ω) is the space of F =∑∞
n=1AnYn +BnV

⊥
n satisfying

‖F‖2H1(Ω) =

∞∑
n=1

(1 + λn)|An|2 + (1 + µn)|Bn|2 <∞.

Finally, the other cases for −1 < s < 0 and 0 < s < 1 follow from the real
interpolation. �

3.3. The space Hs
N (Ω) for −1 ≤ s ≤ 1. The eigenvalue problem (3.3) is reformu-

lated to a weak form in the solution space H1
N (Ω): finding η ∈ R and u ∈ H1

N (Ω)
such that

(3.5) (∇ · u,∇ · v)Ω + (∇⊥ · u,∇⊥ · v)Ω = η(u, v)Ω for all v ∈ H1
N (Ω).

In this case, we use the Helmholtz decomposition in [4] showing that eigenfunctions
u and test functions v in H1

N (Ω) can be decomposed into

u = ∇V + ∇⊥Y and v = ∇Φ + ∇⊥Ψ,

where V,Φ ∈ H1
0 (Ω) and Y,Ψ ∈ H1(Ω) with ∂Y/∂ν, ∂Ψ/∂ν = 0 on ∂Ω. The same

arguments as those used for the case of Hs
T (Ω) can be carried over without any

essential change. We summarize the results for Hs
N .

Proposition 3.4. The complete set of eigenvalues of the problem (3.3) is given by
{λn}∞n=1 ∪ {µn}∞n=1, the set of non-zero Neumann eigenvalues and Dirichlet eigen-

values of the Laplacian, and their corresponding eigenfunctions are {∇⊥Yn}∞n=1

and {∇Vn}∞n=1.

Lemma 3.5. Let Yn be orthonormal Neumann eigenfunctions in L2(Ω) of the
Laplacian for eigenvalues λn and Vn be orthonormal Dirichlet eigenfunctions in

L2(Ω) of the Laplacian for eigenvalues µn. We also denote Y ⊥n = λ
−1/2
n ∇⊥Yn and

V n = µ
−1/2
n ∇Vn for n = 1, 2, . . ..

(1) The set {Y ⊥n ,V n}∞n=1 is a complete orthonormal basis consisting of eigen-
functions to the problem (3.3) for L2(Ω).

(2) The set {(1 + λn)−1/2Y ⊥n , (1 + µn)−1/2V n}∞n=1 is a complete orthonormal
basis consisting of eigenfunctions to the problem (3.3) for H1

N (Ω).

(3) The set {(1+λn)1/2Y ⊥n , (1+µn)1/2V n}∞n=1 is a complete orthonormal basis
consisting of eigenfunctions to the problem (3.3) for H−1

N (Ω).

Theorem 3.6. The interpolation space Hs
N (Ω), −1 ≤ s ≤ 1, is the space of func-

tions F =
∑∞
n=1AnY

⊥
n +BnVn satisfying

‖F‖2Hs
N (Ω) :=

∞∑
n=1

(1 + λn)s|An|2 + (1 + µn)s|Bn|2 <∞.
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3.4. Application to cross-sectional trace estimates in waveguides. For the

domain Ω̂ introduced in Subsection 2.5 with d = 3, we define

Hb(curl, Ω̂) = {u ∈ H(curl, Ω̂) : ν × u = 0 on Γb}.

In this subsection, we will use the convenient norms based on eigenfunction ex-
pansions to analyze the cross-sectional tangential trace and tangential component

trace of vector-fields u ∈ Hb(curl, Ω̂) on Γ0 (here Γ0 is identified with Ω). These
cross-sectional tangential trace and tangential component trace are of importance
in studying electromagnetic wave propagation in perfectly conducting waveguides
[12]. To this end, we first study the regularity estimates for the divergence and curl
operators on the cross-sectional boundary Γ0. Let

divΓ0 : L2(Γ0)→ Ḣ−1(Γ0) and curlΓ0 : L2(Γ0)→ Ḣ−1(Γ0)

be the surface divergence and curl operators in a weak sense defined by

〈divΓ0
φ, ψ〉−1,Γ0

= −(φ,∇yψ)Γ0
,

〈curlΓ0
φ, ψ〉−1,Γ0

= (φ,∇⊥y ψ)Γ0

for φ ∈ L2(Γ0) and ψ ∈ Ḣ1(Γ0). Here the subscript y of the operators ∇y and

∇⊥y is used to indicate that they are differential operators of the variable y on the

surface Γ0 ⊂ R2. Clearly, it holds that

(3.6) ‖divΓ0
φ‖Ḣ−1(Γ0) ≤ ‖φ‖L2(Γ0) and ‖curlΓ0

φ‖Ḣ−1(Γ0) ≤ ‖φ‖L2(Γ0).

Now, the surface divergence and curl operators have the following regularity
properties.

Lemma 3.7. For 0 ≤ s ≤ 1, divΓ0
φ for φ ∈ Hs

T (Γ0) is in Ḣs−1(Γ0) and satisfies

(3.7) ‖divΓ0φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs
T (Γ0).

For −1 ≤ s ≤ 0, there exists a continuous extension divΓ0
: Hs

T (Γ0) → Ḣs−1(Γ0)
satisfying

(3.8) ‖divΓ0
φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs

T (Γ0),

where Ḣs−1(Γ0) is the dual space of Ḣ1−s(Γ0).

Proof. Let 0 ≤ s ≤ 1. For φ ∈ H1
T (Γ0) and ψ ∈ Ḣ1(Γ0), by the definition of divΓ0

and integration by parts with the boundary condition ν ·φ = 0 on ∂Γ0 we observe
that

〈divΓ0
φ, ψ〉1,Γ0

= −(φ,∇yψ)Γ0
= (∇y · φ, ψ)Γ0

= 〈∇y · φ, ψ〉1,Γ0
,

which shows that divΓ0φ = ∇y · φ is in Ḣ0(Γ0) and divΓ0 : H1
T (Γ0)→ Ḣ0(Γ0) is a

continuous operator satisfying

(3.9) ‖divΓ0φ‖Ḣ0(Γ0) ≤ ‖φ‖H1(Γ0).

The real interpolation theory applied to (3.6) and (3.9) establishes (3.7).

For −1 ≤ s ≤ 0, the operator divΓ0 : L2(Γ0) → Ḣ−1(Γ0) can be extended to

H−1
T (Γ0) by defining divΓ0 : H−1

T (Γ0)→ Ḣ−2(Γ0) by

〈divΓ0
φ, ψ〉2,Γ0

= −〈φ,∇yψ〉1,T,Γ0
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for ψ ∈ Ḣ2(Γ0), where Ḣ−2(Γ0) is the dual space of Ḣ2(Γ0) = H2
n(Γ0) and 〈·, ·〉2,Γ0

is the duality pairing between Ḣ−2(Γ0) and Ḣ2(Γ0). For ψ ∈ Ḣ2(Γ0) with ψ =∑∞
n=0 ψnYn, since

∑∞
n=1

√
λnψnYn converges in L2(Γ0) it can be easily shown that

∇yψ =

∞∑
n=1

ψn∇yYn =

∞∑
n=1

√
λnψnYn

and so ‖∇yψ‖2H1(Γ0)
=
∑∞
n=1(1 + λn)λn|ψn| < ‖ψ‖2Ḣ2(Γ0)

. Thus, it is well-defined

since ∇yψ belongs to H1
T (Γ0) for ψ ∈ Ḣ2(Γ0). Also, it is an extension since

〈divΓ0
φ, ψ〉2,Γ0

= −〈φ,∇yψ〉1,T,Γ0
= −(φ,∇yψ)Γ0

for φ ∈ L2(Γ0).
By estimating the duality pairing

|〈divΓ0
φ, ψ〉2,Γ0

| ≤ ‖φ‖H−1
T (Γ0)‖∇yψ‖H1(Γ0) ≤ ‖φ‖H−1

T (Γ0)‖ψ‖Ḣ2(Γ0),

we can obtain that

(3.10) ‖divΓ0
φ‖Ḣ−2(Γ0) = sup

0 6=ψ∈Ḣ2(Γ0)

|〈divΓ0
φ, ψ〉2,Γ0

|
‖ψ‖Ḣ2(Γ0)

≤ ‖φ‖H−1
T (Γ0).

Finally, we use the real interpolation theory again to obtain (3.8) from (3.6) and
(3.10). �

The regularity estimate of the operator curlΓ0
can be obtained by using the same

argument as that used in the above lemma.

Lemma 3.8. For 0 ≤ s ≤ 1, curlΓ0φ for φ ∈ Hs
N (Γ0) is in Ḣs−1(Γ0) and satisfies

(3.11) ‖curlΓ0
φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs

N (Γ0).

For −1 ≤ s ≤ 0, there exists a continuous extension curlΓ0 : Hs
N (Γ0) →

Ḣs−1(Γ0) satisfying

(3.12) ‖curlΓ0φ‖Ḣs−1(Γ0) ≤ ‖φ‖Hs
N (Γ0),

where Ḣs−1(Γ0) is the dual space of Ḣ1−s(Γ0).

By using the continuity of the operator divΓ0 proved in Lemma 3.7, for u =∑∞
n=1AnYn +BnV

⊥
n ∈ H−1

T (Γ0) , we have then

(3.13) divΓ0
u =

∞∑
n=1

divΓ0
(AnYn +BnV

⊥
n ) =

∞∑
n=1

−
√
λnAnYn,

which converges at least in Ḣ−2(Γ0). Similarly, we use Lemma 3.8 to obtain that

for u =
∑∞
n=1AnY

⊥
n +BnVn ∈ H−1

N (Γ0),

(3.14) curlΓ0u =

∞∑
n=1

curlΓ0(AnY
⊥
n +BnVn) =

∞∑
n=1

√
λnAnYn,

which converges at least in Ḣ−2(Γ0).

For u ∈ Hb(curl, Ω̂) we define γτ (u) = ν × u|Γ0 and πτ (u) = ν × (u× ν)|Γ0 for
the tangential trace and tangential component trace of u on Γ0, respectively. We
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also define the spaces of three dimensional vector-valued functions

H
−1/2
T (divΓ0

,Γ0) = {φ ∈ H
−1/2
T (Γ0) : divΓ0

φ ∈ H−1/2(Γ0)},

H
−1/2
N (curlΓ0

,Γ0) = {φ ∈ H
−1/2
N (Γ0) : curlΓ0

φ ∈ H−1/2(Γ0)}

via the natural embedding ι : R2 ↪→ {0} × R2 ⊂ R3. The space H
−1/2
T (divΓ0

,Γ0)
for tangential traces can be characterized by the norm estimates analyzed in Theo-

rem 3.3 and (3.13): u ∈ H
−1/2
T (divΓ0

,Γ0) if and only if u has a series representation

u =
∑∞
n=1AnYn +BnV

⊥
n satisfying

‖u‖2
H
−1/2
T (divΓ0

,Γ0)
:= ‖u‖2

H
−1/2
T (Γ0)

+ ‖divΓ0
u‖2Ḣ−1/2(Γ0)

=

∞∑
n=1

(1 + λn)1/2|An|2 + (1 + µn)−1/2|Bn|2 <∞.

Analogously, due to Theorem 3.6 and (3.14) the space H
−1/2
N (curlΓ0

,Γ0) for tan-
gential component traces can be interpreted as a space equipped with the norm

‖u‖2
H
−1/2
N (curlΓ0

,Γ0)
:= ‖u‖2

H
−1/2
N (Γ0)

+ ‖curlΓ0
u‖2Ḣ−1/2(Γ0)

=

∞∑
n=1

(1 + λn)1/2|An|2 + (1 + µn)−1/2|Bn|2 <∞

for u =
∑∞
n=1AnY

⊥
n +BnVn.

In order to investigate regularity estimates and continuity of the trace operators,

it is required to study liftings of functions in H
1/2
T (Γ0) and Ḣ3/2(Γ0). The cylin-

drical geometry of waveguides allows to define liftings as shown in the following
lemma.

Lemma 3.9. For any φ ∈ H
1/2
T (Γ0) (understood as a vector-valued function in

R3 via the natural embedding ι) there exists φ̃ ∈ H1(Ω̂) = (H1(Ω̂))3 satisfying

φ̃|Γ0 = φ and

‖φ̃‖H1(Ω̂) ≤ C‖φ‖H1/2
T (Γ0)

.

Also, for any φ ∈ Ḣ3/2(Γ0) there exists φ̃ ∈ H2(Ω̂) satisfying φ̃|Γ0
= φ and

‖φ̃‖Hs(Ω̂) ≤ C‖φ‖Ḣs−1/2(Γ0)

for s = 1, 2.

Proof. Let φ ∈ H
1/2
T (Γ0) be given by φ =

∑∞
n=1AnYn+BnV

⊥
n . We denote a semi-

infinite cylindrical domain with base Ω by Ω∞ = (−∞, 0)× Ω. Each cross-section
at x = a of Ω∞ for a < 0 can be identified with Ω. Let us define

ψ(x, y) =

∞∑
n=1

(
Ane

√
1+λnxYn(y) +Bne

√
1+µnxV⊥n (y)

)
in Ω∞.

Fubini’s theorem enables us to estimate ψ in H1(Ω∞) as follows,

(3.15) ‖ψ‖2H1(Ω∞) =

∫ 0

−∞
‖ψ(x, ·)‖2H1(Ω) + ‖∂ψ

∂x
(x, ·)‖2L2(Ω)dx.
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By invoking Theorem 3.3, we obtain that

(3.16) ‖ψ(x, ·)‖2H1(Ω) =

∞∑
n=0

(1 + λn)|An|2e2
√

1+λnx + (1 + µn)|Bn|2e2
√

1+µnx

for x < 0. For the second term in (3.15) pertaining to the derivative with respect
to x, let ψm be the partial sum of ψ. Noting that for each x < 0, ζe2ζx is bounded
for all ζ =

√
1 + λn or

√
1 + µn, ∂ψm/∂x(x, ·) converges in L2(Ω) for each x < 0,

that is

lim
m→∞

∂ψm
∂x

(x, ·) =

∞∑
n=1

(1+λn)1/2Ane
√

1+λnxYn+(1+µn)1/2Bne
√

1+µnxV⊥n ∈ L2(Ω),

which implies that

∂ψ

∂x
(x, ·) =

∞∑
n=1

(1 + λn)1/2Ane
√

1+λnxYn + (1 + µn)1/2Bne
√

1+µnxV⊥n

and

(3.17) ‖∂ψ
∂x

(x, ·)‖2L2(Ω) =

∞∑
n=1

(1 + λn)|An|2e2
√

1+λnx + (1 + µn)|Bn|2e2
√

1+µnx.

Now, substitution of (3.16) and (3.17) into (3.15) gives

‖ψ‖2H1(Ω∞) =

∫ 0

−∞

( ∞∑
n=1

2(1 + λn)|An|2e2
√

1+λnx + 2(1 + µn)|Bn|2e2
√

1+µnx

)
dx

and the monotone convergence theorem shows that

‖ψ‖2H1(Ω∞) =

∞∑
n=1

(1 + λn)1/2|An|2 + (1 + µn)1/2|Bn|2 = ‖φ‖2
H

1/2
T (Γ0)

.

Finally, by multiplying ψ by a cutoff function χ, which is one for −L/2 < x < 0 and

vanishes for x < −L, we have a desired lifting φ̃, the zero extension of χψ|(−L,0)×Ω

to Ω̂, satisfying φ̃|Γ0 = φ and ‖φ̃‖H1(Ω̂) ≤ C‖ψ‖H1(Ω∞) = C‖φ‖
H

1/2
T (Γ0)

, which

completes the first part of the lemma.
The second part can be proved in the same way. In this case we take ψ =∑∞
n=0Ane

√
1+λnxYn(y) for φ =

∑∞
n=0AnYn and define φ̃(x, y) by the zero extension

of χψ|(−L,0)×Ω to Ω̂ with the cutoff function χ defined as above. Then the similar
argument used above can show that

‖φ̃‖2H1(Ω̂)
≤ C‖ψ‖2H1(Ω∞) = C

∫ 0

−∞
‖ψ(x, ·)‖2H1(Ω) + ‖∂ψ

∂x
(x, ·)‖2H0(Ω)dx

= C

∞∑
n=0

(1 + λn)1/2|An|2 = C‖φ‖2Ḣ1/2(Γ0)
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and

‖φ̃‖2H2(Ω̂)
≤ C‖ψ‖2H2(Ω∞)

= C

∫ 0

−∞
‖ψ(x, ·)‖2H2(Ω) + ‖∂ψ

∂x
(x, ·)‖2H1(Ω) + ‖∂

2ψ

∂x2
(x, ·)‖2H0(Ω)dx

= C

∞∑
n=0

3

2
(1 + λn)3/2|An|2 ≤ C‖φ‖2Ḣ3/2(Γ0)

,

which completes the proof. �

The main results of the continuity of the tangential trace and tangential compo-
nent trace operators will be presented.

Theorem 3.10. The map γτ : Hb(curl, Ω̂)→ H
−1/2
T (divΓ0 ,Γ0) is continuous.

Proof. Let u ∈ Hb(curl, Ω̂). For φ ∈ H
1/2
T (Γ0), we denote by φ̃ the extension of φ

in H1(Ω̂) constructed as in Lemma 3.9. Since ν × u = 0 on Γb, the integration by
parts gives

(3.18) (∇× u, φ̃)Ω̂ − (u,∇× φ̃)Ω̂ =

∫
Γ0

γτ (u) · φ dy = 〈γτ (u),φ〉1/2,T,Γ0
.

Therefore, we have

〈γτ (u),φ〉1/2,T,Γ0
≤ C‖u‖H(curl,Ω̂)‖φ̃‖H1(Ω̂) ≤ C‖u‖H(curl,Ω̂)‖φ‖H1/2

T (Γ0)
,

from which it follows that

(3.19) ‖γτ (u)‖
H
−1/2
T (Ω)

≤ C‖u‖H(curl,Ω̂).

For the estimate of divΓ0
(γτ (u)), let φ ∈ Ḣ3/2(Γ0) be expressed by the series

φ =
∑∞
n=0 φnYn and φ̃ be a lifting given by Lemma 3.9. Then it holds that ∇yφ =∑∞

n=1

√
λnφnYn is in H

1/2
T (Γ0). Therefore, we can show that

(∇× u,∇φ̃)Ω̂ =

∫
Γ0

γτ (u) ·∇yφ dy = 〈γτ (u),∇yφ〉1/2,T,Γ0

and hence

〈divΓ0(γτ (u)), φ〉3/2,T,Γ0
= −〈γτ (u),∇yφ〉1/2,T,Γ0

≤ C‖u‖H(curl,Ω̂)‖φ̃‖H1(Ω̂)

≤ C‖u‖H(curl,Ω̂)‖φ‖Ḣ1/2(Γ0).

Since Ḣ3/2(Γ0) is dense in Ḣ1/2(Γ0), we can conclude that

(3.20)
‖divΓ0

(γτ (u))‖Ḣ−1/2(Γ0) = sup
φ∈Ḣ3/2(Γ0)

|〈divΓ0
(γτ (u)), φ〉3/2,T,Γ0

|
‖φ‖Ḣ1/2(Γ0)

≤ C‖u‖H(curl,Ω̂).

Finally, combining (3.19) and (3.20) completes the proof. �

Theorem 3.11. The map πτ : Hb(curl, Ω̂)→ H
−1/2
N (curlΓ0

,Γ0) is continuous.
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Proof. We first note that γτ (u) ∈ H
−1/2
T (Γ0) if and only if πτ (u) ∈ H

−1/2
N (Γ0). In

addition, since

〈divΓ0
(γτ (u)), φ〉3/2,Γ0

= −〈γτ (u),∇yφ〉1/2,T,Γ0

= −〈πτ (u),∇⊥y φ〉1/2,N,Γ0
= −〈curlΓ0

(πτ (u)), φ〉3/2,Γ0

for φ ∈ Ḣ3/2(Γ0), we have divΓ0
(γτ (u)) = −curlΓ0

(πτ (u)). Therefore, the con-
tinuity of the tangential component trace operator πτ follows immediately from
Theorem 3.10. �

4. Appendix

In this appendix we provide the density of C∞n (ΩE) in H2
n(ΩE) for a bounded

and smooth domain ΩE ⊂ Rd.

Lemma 4.1. The space C∞n (ΩE) is dense in H2
n(ΩE).

Proof. For any u ∈ H2
n(ΩE), let g = u|∂ΩE

be the trace of u on ∂ΩE . Since
C∞(∂ΩE) is dense inH3/2(∂ΩE), there exists a sequence gn ∈ C∞(∂ΩE) converging
to g in H3/2(∂ΩE). Due to the continuous right inverse of a trace operator, we can
find vn ∈ C∞(ΩE) such that vn = gn, ∂vn/∂ν = 0 on ∂ΩE and ‖vn‖H2(ΩE) ≤
C‖gn‖H3/2(∂ΩE) with C independent of gn. Since {vn}∞n=1 is a Cauchy sequence in

H2(ΩE), there exists v ∈ H2(ΩE) such that vn → v in H2(ΩE). It also satisfies
v = g and ∂v/∂ν = 0 on ∂ΩE . Now, as u − v ∈ H2

0(ΩE), a subspace of functions
η in H2(ΩE) such that η = 0 and ∂η/∂ν = 0 on ∂ΩE , the density of C∞0 (ΩE) in
H2

0(ΩE) guarantees the existence of a sequence φn in C∞0 (ΩE) converging to u− v
in H2(ΩE). Finally, we can conclude that φn + vn in C∞n (ΩE) converges to u in
H2(ΩE), which completes the proof. �
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