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Abstract

In this paper, we study a multiple Dirichlet-to-Neumann (MDtN) boundary
condition for solving a time-harmonic multiple scattering problem governed by
the Helmholtz equation in waveguides that include multiple obstacles, cavities
or inhomogeneities with straight waveguides placed between them. The MDtN
condition is derived by analyzing analytic solutions represented by Fourier series
in the straight waveguides between obstacles, cavities or inhomogeneities. The
proposed method is then to remove the straight waveguides between scatterers
and impose the MDtN condition on artificial boundaries resulting from domain
truncation. This numerical technique can allow a great reduction of computa-
tional efforts. The well-posedness of the reduced problem with the full MDtN
condition and the reduced problem with truncated MDtN conditions are estab-
lished. Also the exponential convergence of approximate solutions satisfying
truncated MDtN conditions will be proved.

Keywords: multiple Dirichlet-to-Neumann condition, multiple scattering,
Helmholtz equation, waveguide

1. Introduction

This paper is concerned with an efficient numerical technique for solving
a time-harmonic scattering problem arising in waveguides including multiple
obstacles, cavities or inhomogeneities with straight waveguides placed between
them. Scattering of electromagnetic and acoustic waves from obstacles, cavities
or inhomogeneities takes place in many applications of engineering and science.
These scattering problems occur in many different geometric configurations, for
instance, scattering problems in exterior domains of bounded obstacles are a
main issue for studying scattering problems in open spaces [7] such as radar
imaging, or scattering problems for obstacles in a domain bounded by an infi-
nite surface boundary [22, 24], including half-space problems, are an important
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(a) Cavities connected by a straight waveguide

(b) Truncated domain Ω

Figure 1: Geometric configuration

subject for research of wave phenomena arising over outdoor grounds or sea
surfaces. Scattering problems from cavities embedded in the infinite plane have
been studied for e.g., radar cross section [3, 5]. Also, scattering problems in cavi-
ties attached by waveguides (which will serve as the model problem in this paper)
are investigated for an application such as microwave resonators [6]. For multi-
ple scattering problems when obstacles or cavities are well-separated, there have
been intensive studies for efficient numerical methods that can provide accurate
approximate solutions with a small amount of computational costs. These are
found in many literature for example, [1, 10, 17, 15] for exterior problems, [2]
for half-space problems, [18, 25] for cavity problems in half-spaces and [19] for
multiple scattering in waveguides among others. See also [20] for an extensive
overview of multiple scattering problems. In this paper, we develop an efficient
computational method for solving multiple scattering problems in waveguides
and give rigorous well-posedness and convergence analyses. Compared with the
former method in [19] with boundary conditions based on integral representa-
tions, our approach utilizes DtN boundary conditions.

In order to describe our method, we consider a time-harmonic wave scatter-
ing problem in a domain Ω̃ obtained by joining a finite number of cavities with
straight waveguides. For simple presentation, we assume that Ω̃ is a bounded
and Lipschitz domain in R2, consisting of two disjoint cavities Ω1, Ω2 and a
straight waveguide Ω12 = (0, L) × Θ connecting two domains Ω1 and Ω2 with
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Γj , j = 1, 2 being the common boundary of Ωj and Ω12 (See Figure 1),

Ω̃ = Ω1 ∪ Ω12 ∪ Ω2 ∪ Γ1 ∪ Γ2.

Here Θ is a connected interval in R and the axis of Ω12 is parallel to the x1-axis,
the first coordinate axis of R×R. We remark that the method to be developed
in this paper can be extended to problems in R3 as long as eigenpairs of the
cross-section Θ ⊂ R2 are available (such as a circular or rectangular domain)
to implement DtN boundary conditions defined based on Fourier series as will
be seen later. We further assume that the cavity Ωj , j = 1, 2 includes a thin
layer Ωδj of width δ, which does not have any inclusion or wave source. Thus
any inclusion or wave source of the problem is at least δ away from Γj , and the
width δ will serve as a parameter of the exponential convergence of the proposed
method. The cross-sectional boundaries of Ωδj are denoted by Γδj and Γj as seen
Figure 1.

When we are interested in solutions only in the cavities Ω1 and Ω2, we may
truncate the domain Ω̃ to a smaller domain Ω := Ω1 ∪ Ω2 by removing the
straight waveguide Ω12. In this procedure, it is required to impose appropriate
boundary conditions on artificial boundaries Γ1 and Γ2, which can allow us to
have solutions coinciding with a restriction of those obtained by solving in the
whole domain Ω̃. Wave scattering in Ω̃ takes place complicatedly since wave
fields produced inside the cavities Ω1 and Ω2 bounce back and forth through
the waveguide Ω12, however the geometric structure of the domain Ω12 provides
us with simple analytic representations of solutions, one of which is based on
Fourier series and the other relies on single and double layer potentials using
the Green’s function. Both of series and integral representations of solutions in
Ω12 show that they are decomposed into right-going and left-going components
under the time-harmonic assumption e−iωt with angular frequency ω > 0. From
this observation we notice that information on traces of right-going components
on Γ1 and that of left-going components on Γ2 are sufficient to construct the
full wave fields on Ω12. By examining the DtN operators for right-going and
left-going components, we can derive the MDtN condition for solutions on Γj .
Therefore we remove Ω12 and introduce instead new auxiliary variables rep-
resenting the traces of right-going and left-going components only on artificial
boundaries and satisfying the MDtN condition, which allows a drastic reduction
of computational efforts. A remark on the analysis is that series representations
play an important role in deriving the MDtN condition whereas layer potentials
given by integral representations are the main ingredient in the stability anal-
ysis. In fact, the layer potential theory (see e.g., [7, 23]) enables us to have a
stable decomposition of the right-going and left-going components of scattering
solutions in Ω12.

The use of the MDtN condition was initially proposed for exterior multiple
scattering problems in [10]. Here we apply the idea to the multiple scattering
problems arising in waveguides and establish (1) well-posedness of the reduced
problem supplemented with the MDtN condition on artificial boundaries and
an equivalence of the reduced problem to the original full problem, (2) well-
posedness of the approximate problem obtained by replacing the infinite series of
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the MDtN condition with a finite series with M numbers of terms for sufficiently
large M , and (3) exponential convergence of approximate solutions obtained by
the proposed method as M tends toward infinity.

The paper is organized as follows. In Section 2 we introduce the MDtN
condition and the reduced problem posed only on Ω with the MDtN condition.
Also, the well-posedness of the reduced problem and the equivalence between
the reduced problem and the original problem is investigated. In Section 3 we
propose a numerical technique by truncating the infinite series of the MDtN
condition. There we study the well-posedness of the reduced problem supple-
mented with the truncated MDtN condition and the exponential convergence of
approximate solutions. Finally, numerical experiments illustrating the conver-
gence theory will be presented in Section 4.

2. Multiple scattering and reduced problem

2.1. Multiple Dirichlet-to-Neumann condition

The model problem under consideration is the Helmholtz equation

−∆uex − k2uex = f in Ω̃,

∂uex

∂νΩ̃

= 0 on ∂Ω̃,
(2.1)

where k is a positive wavenumber and f ∈ L2(Ω̃) is a source term supported in
Ω = Ω1 ∪ Ω2 away from the thin layers Ωδ1 ∪ Ωδ2. Here νD represents the unit
normal vector on ∂D pointing outward from a domain D. From here on we use
(·, ·)D for L2-inner product over the complex field C in a domain D

(u, v)D =

∫
D
u(x)v̄(x)dx,

and we denote the dual space (as the space of anti-linear functionals) of H1(D)

by H̃−1(D).

We consider a weak solution uex ∈ H1(Ω̃) satisfying

A(uex, φ) = (f, φ)Ω for φ ∈ H1(Ω̃), (2.2)

where
A(u, φ) = (∇u,∇φ)Ω̃ − k

2(u, φ)Ω̃.

For unique solvability of the problem (2.2), we assume that k2 is not a Neumann

eigenvalue of −∆ in Ω̃. Then the Fredholm alternative theorem implies that
there exists a unique solution uex ∈ H1(Ω̃) to the problem (2.2) satisfying

‖uex‖H1(Ω̃) ≤ C‖f‖L2(Ω). (2.3)

Throughout the paper we will use C for a generic constant that depend only on
the domain Ω̃ and wavenumber k.
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Denoting the second coordinate variable for R × R by x2, let {Yn}∞n=0 be
the set of an orthonormal basis in L2(Θ) consisting of Neumann eigenfunctions
of the negative cross-sectional Laplace operator −∆x2

on Θ, associated with
eigenvalues λn,

0 = λ0 < λ1 < λ2 < . . . .

Due to the orthonormality of Yn, fractional Sobolev spaces Hs(Θ) for −1/2 ≤
s ≤ 1/2 is characterized by the space of functions φ =

∑∞
n=0 φnYn satisfying,

(see [16]),

‖φ‖2Hs(Θ) =

∞∑
n=0

(1 + λ2
n)s|φn|2 <∞.

For any M ∈ N, we define Hs
≤M (Θ) by the subspace spanned by {Yn}Mn=0 in

Hs(Θ). Similarly, Hs
=M (Θ), Hs

6=M (Θ) and Hs
>M (Θ) can be defined accordingly

to the symbols used in the subscript.
Let µ2

n = k2−λ2
n. Since λn approaches infinity as n→∞, there exists N ∈ N

such that λn ≤ k for n ≤ N and λn > k for n > N . Thus, µn =
√
k2 − λ2

n ≥ 0

for n ≤ N and µn = iµ̃n with µ̃n =
√
λ2
n − k2 > 0 for n > N by taking a

negative real axis branch cut. In a certain case, we may have µN = 0 and
such a mode corresponding to n = N is called a cutoff mode. By separation
of variables, it can be shown that the solution uex in Ω12 is a superposition of
infinitely many different modes uexn for n = 0, 1, . . . ,

uexn (x1, x2) =

{
(Ane

iµnx1 +Bne
−iµnx1)Yn(x2) if µn 6= 0,

(An +Bnx1)Yn(x2) if µn = 0.
(2.4)

Since the Fourier coefficient (linear function of x1) of general solutions of cutoff
modes is different from that (exponential function of x1) of other modes, we
assume that cutoff modes are involved in the problem for a complete analysis
and reserve the index N for cutoff modes.

From the solution formula (2.4), we note that the n-th mode of the solution
uex for µn 6= 0 is decomposed into the right-going and left-going components
under the time-harmonic assumption e−iωt with angular frequency ω > 0. For
n = N , the cutoff mode can also be decomposed into two parts by expressing
AN +BNx1 in terms of linear Lagrange basis polynomials L0 and LL with two
nodes 0 and L on the interval (0, L),

uexN (x1, x2) = (uexN |Γ1
L0(x1) + uexN |Γ2

LL(x1))YN (x2).

Now, we denote the superposition of all right-going (left-going) components
including the decreasing component of cutoff modes in the propagating direction
by uright (uleft, respectively), i.e.,

uright(x1, ·) = uexN |Γ1
L0(x1)YN +

∑
n 6=N

Ane
iµnx1Yn, (2.5)

uleft(x1, ·) = uexN |Γ2
LL(x1)YN +

∑
n 6=N

Bne
−iµnx1Yn, (2.6)
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which allows us to have a decomposition of the solution uex in Ω12

uex = uright + uleft. (2.7)

Remark 2.1. According to the decomposition (2.7) of the solution uex, we in-
terpret uright and uleft as outgoing components of uex from Ω1 and Ω2 respec-
tively. Similarly, they are thought of as incoming components into Ω2 and Ω1,
respectively.

In order to obtain a reduced problem posed only on Ω by removing the
straight waveguide Ω12 from Ω̃, it is required to understand Dirichlet and Neu-
mann traces of solutions on Γ1 and Γ2. To this end, we introduce the following
Dirichlet-to-Neumann (DtN) and Dirichlet-to-Dirichlet (DtD) operators. The
DtN and DtD operators for exterior problems can be found in [10].

1. For the Neumann trace of outgoing components from the domain Ωi we
introduce the well-known DtN map Tii : H1/2(Γi) → H−1/2(Γi) defined
by

Tii(φ) = −φN
L
YN +

∑
n 6=N

iµnφnYn

for φ =
∑∞
n=0 φnYn in H1/2(Γi).

2. For the Neumann trace of incoming components into the domain Ωj , we
define a transferred DtN map Tij : H1/2(Γi)→ H−1/2(Γj), i 6= j, by

Tij(φ) =
φN
L
YN +

∑
n 6=N

−iµne
iµnLφnYn

for φ =
∑∞
n=0 φnYn in H1/2(Γi).

3. At last, for the Dirichlet trace of incoming components into the domain
Ωj we define a transferred DtD map Pij : H1/2(Γi)→ H1/2(Γj), i 6= j, by

Pij(φ) =
∑
n 6=N

eiµnLφnYn

for φ =
∑∞
n=0 φnYn in H1/2(Γi).

Remark 2.2. These operators Tij and Pij can be defined as continuous op-
erators Tij : Hs(Γi) → Hs−1(Γj) and Pij : Hs(Γi) → Hs(Γj) for s ∈ R as
well.

In fact, Tij(φ) and Pij(φ) for φ ∈ H1/2(Γi) and i 6= j are associated with the
Neumann and the Dirichlet traces on Γj of an outgoing solution in the straight
waveguide Ω12 in the sense of Remark 2.1 with a Dirichlet data given by φ on
Γi, respectively. More precisely,

T11(φ) =
∂uright

∂νΩ1

|Γ1 and T12(φ) =
∂uright

∂νΩ2

|Γ2
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with uright = φ on Γ1, and

T21(φ) =
∂uleft

∂νΩ1

|Γ1 and T22(φ) =
∂uleft

∂νΩ2

|Γ2

with uleft = φ on Γ2. Similarly, Pij(φ) is the operator defined as

P12(φ) = uright|Γ2
with uright = φ on Γ1,

P21(φ) = uleft|Γ1
with uleft = φ on Γ2.

Since it holds that

|µn|2

1 + λ2
n

=
|k2 − λ2

n|
1 + λ2

n

< C for n = 0, 1, . . . (2.8)

with C depending only on k, we have the continuity of Tij and Pij . In addition,
we need a lower bound of |µn| for non-cutoff mode for norm estimates associated
with layer potentials afterward. For this we denote the smallest non-zero |µn|
by µmin = min{|µn| : µn 6= 0}, which depends on the position of k with respect
to the distribution of λn. In particular, a careful analysis is required in case
that k does not coincide with any of λn but k is close to one of λn. The mode
corresponding to such λn is called a near-cutoff mode, that is, |µn| = µmin � 1.
In order to handle both cutoff modes and near-cutoff modes (they do not exist
simultaneously though), we keep the index N for cutoff modes and assume that
µmin � 1 for near-cutoff modes. Note that if k 6= λn for all n, the index for
near-cutoff modes is N − 1 or N + 1 by the assumption that k < λN+1 and
the notational convention with N reserved for cutoff modes. For showing the
influence of µmin on the stability and convergence of the proposed method, norm
estimates will be made with constants involving µmin. However if near-cutoff
modes do not exist, we can ignore the dependence on µmin.

2.2. Reduced problem supplemented with the MDtN condition

In this subsection we propose a domain truncation method to solve the
problem (2.2) by removing Ω12 from Ω̃. To this end let W = H1(Ω)×H1/2(Γ1)×
H1/2(Γ2) equipped with the norm,

‖(u, u1, u2)‖W = (‖u‖2H1(Ω) + µ2
min(‖u1‖2H1/2(Γ1) + ‖u2‖2H1/2(Γ2)))

1/2

for (u, u1, u2) ∈ W , and we denote a complement of Γ̄1 ∪ Γ̄2 from ∂Ω by Γ =
∂Ω \ (Γ̄1 ∪ Γ̄2).

The reduced problem resulting from removing Ω12 can be written as a prob-
lem to find (u, u1, u2) ∈W satisfying

∆u+ k2u = f in Ω,

∂u

∂ν
= 0 on Γ

(2.9)
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and

∂u

∂ν
= T11(u1) + T21(u2) on Γ1,

∂u

∂ν
= T12(u1) + T22(u2) on Γ2, (2.10)

u = u1 + P21(u2) on Γ1, u = P12(u1) + u2 on Γ2. (2.11)

Theorem 2.3. There exists a unique solution (u, u1, u2) in W to the problem
(2.9)-(2.11). In addition, if uex is the solution to the problem (2.2), then u
coincides with the restriction of uex to Ω.

proof. Let uex be the unique solution to the problem (2.2). By the definition
of Tij and Pij based on the decomposition (2.7) of the solution uex in Ω12, it
is obvious that the triple (u, u1, u2) ∈ W defined by u := uex|Ω, u1 := uright|Γ1

and u2 := uleft|Γ2 solves the the reduced problem, which asserts the existence
of a solution to the problem (2.9)-(2.11).

Conversely, suppose that (u, u1, u2) ∈ W is a solution to the problem (2.9)-
(2.11). Let w1 and w2 ∈ H1(Ω12) be right-going and left-going solutions of
the form (2.5) and (2.6) determined by the Dirichlet data w1 = u1 on Γ1 and
w2 = u2 on Γ2, respectively. We then define û by

û =

{
u in Ω,
w1 + w2 in Ω12.

We claim that û = uex in Ω̃. Indeed, by the definition of Tij and Pij , it is
obvious that

Pij(ui) = wi|Γj and Tij(ui) =
∂wi
∂νΩj

|Γj ,

which implies that

u = w1 + w2 and
∂u

∂νΩ
=

∂

∂νΩ
(w1 + w2) on Γ1 ∪ Γ2.

Therefore it can be shown that û is in H1(Ω) and solves the problem (2.2).
Finally, since the problem (2.2) has at most one solution, û needs to coincide
with uex and the uniqueness of solutions to the problem (2.9)-(2.11) follows. �

As seen in Theorem 2.3, the problem (2.9)-(2.11) has a unique solution
(u, u1, u2) ∈ W . Since uex|Ω = u, the stability (2.3) of the problem (2.2) yields
that

‖u‖H1(Ω) ≤ ‖uex‖H1(Ω̃) ≤ C‖f‖L2(Ω). (2.12)

In order to estimate u1 and u2, which are the Dirichlet traces of uright and uleft,
respectively, in terms of the wave source f , we consider an orthogonal decom-
position of functions in H1(Ω12). Assuming that the N -th mode is assigned to
cutoff modes, any function v ∈ H1(Ω12) can be written uniquely as

v = vN + v 6=N , (2.13)
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where

vN (x1, x2) = (v(x1, ·), YN )ΘYN (x2),

v 6=N (x1, x2) =
∑
n6=N

(v(x1, ·), Yn)ΘYn(x2).

By Fubini’s theorem, one can easily show that

‖v‖2H1(Ω12) = ‖vN‖2H1(Ω12) + ‖v 6=N‖2H1(Ω12)

and it gives the orthogonal decomposition of H1(Ω12)

H1(Ω12) = H1
=N (Ω12)⊕H1

6=N (Ω12)

according to (2.13). Thus we will do norm estimates by splitting functions
in H1(Ω12) into cutoff components and non-cutoff components. Now, uright

and uleft are broken into cutoff components and non-cutoff components, that is,
uright = uright

N +uright
6=N and uleft = uleft

N +uleft
6=N , and we investigate each component

of uright and uleft in the next subsections in more details.

2.3. Estimates of non-cutoff components: Integral representation and layer po-
tentials

This subsection is devoted to estimating non-cutoff components uright
6=N and

uleft
6=N of uright and uleft, respectively, by employing the theory of single and

double layer potentials. The estimates obtained in this subsection will be used
for the stability estimate of solutions to the problem (2.9)-(2.11).

For x = (x1, x2) and y = (y1, y2), let G(x, y) be the Green’s function of
the Helmholtz equation in the infinite waveguide Ω∞ = R×Θ excluding cutoff
components,

G(x, y) =
∑
n 6=N

Yn(x2)Yn(y2)
eiµn|x1−y1|

−2iµn
(2.14)

(see e.g., [6, 8]). We define the single and double layer potentials on Γj , j = 1, 2

Sj(ψ) =

∫
Γj

G(·, y)ψ(y)dy2 for ψ ∈ H−1/2(Γj),

Dj(ψ) =

∫
Γj

∂G

∂νΩ12

(·, y)ψ(y)dy2 for ψ ∈ H1/2(Γj).

Then the non-cutoff component uex6=N of the solution uex in Ω12 can be written
as

uex6=N (x) =

∫
Γ1∪Γ2

[
∂uex

∂νΩ12

(y)G(x, y)− ∂G

∂νΩ12

(x, y)uex(y)

]
dy2.

Due to the definition of the Green’s function (2.14), it turns out that

uright
6=N (x) =

∫
Γ1

[
∂uex

∂νΩ12

(y)G(x, y)− ∂G

∂νΩ12

(x, y)uex(y)

]
dy2,

uleft
6=N (x) =

∫
Γ2

[
∂uex

∂νΩ12

(y)G(x, y)− ∂G

∂νΩ12

(x, y)uex(y)

]
dy2,

(2.15)
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respectively. Here we note that although uright and uleft are components of
uex defined only on Ω12, uright can be extended to any x > 0 according to the
formulas (2.15), and so can uleft for any x < L analogously.

In order to estimate the single and double layer potentials we let

Ω∗1 = (0, 1)×Θ and Ω∗2 = (L− 1, L)×Θ,

which are not necessarily contained in Ω12 as mentioned above, but the left
boundary {0}×Θ of Ω∗1 is Γ1 and the right boundary {L}×Θ of Ω∗2 is Γ2. We
will first consider the Newton potential on Ω∗j ,

Nj(φ) =

∫∫
Ω∗j

G(·, y)φ(y)dy

for φ ∈ H̃−1(Ω∗j ). We note that H1(Ω∞) and H̃−1(Ω∞) are Sobolev spaces of

functions v(x1, x2) =
∑∞
n=0 vn(x1)Yn(x2) satisfying

‖v‖2Hs(Ω∞) or ‖v‖2
H̃s(Ω∞)

=

∞∑
n=0

∫
R

(1 + λ2
n + |ξ1|2)s|v̂n(ξ1)|2dξ1 <∞,

with s = 1,−1, respectively, where v̂n is the Fourier transform of vn with the
Fourier variable ξ1 for x1. We define H1

6=N (Ω∞) and H1
6=N (Ω∗j ) analogously to

H1
6=N (Ω12).

Lemma 2.4. The Newton potential Nj : H̃−1(Ω∗j )→ H1
6=N (Ω∗j ) is continuous,

‖Nj(φ)‖H1(Ω∗j ) ≤
C

µmin
‖φ‖H̃−1(Ω∗j ) for φ ∈ H̃−1(Ω∗j ).

If a near-cutoff mode does not exist in φ, then µmin is not involved.

proof. We only prove the case of j = 1 as the other case is proved in the same
way. Let φ ∈ C∞0 (Ω∗1). Then the zero extension φ̃ of φ to Ω∞ has a series
representation in Ω∞,

φ̃(x1, x2) =
∞∑
n=0

φ̃n(x1)Yn(x2),

where φ̃n(x1) = (φ̃(x1, ·), Yn)Θ and they are supported in the interval (0, 1). In
addition, v = Nj(φ) can be written as a Fourier series,

v(x1, x2) =

∞∑
n=0

vn(x1)Yn(x2),

where vn is given by

vn(x1) = (v(x1, ·), Yn)Θ

=

∫∫
Ω∗1

Yn(y2)
eiµn|x1−y1|

−2iµn
φ̃(y1, y2)dy =

∫
R

eiµn|x1−y1|

−2iµn
φ̃n(y1)dy1
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for n 6= N and vN = 0 for n = N as the Green’s function G does not have the
N -th mode. Now, we shall estimate vn in two cases, one for propagating modes
and possibly near-cutoff mode, n ≤ N + 1, n 6= N , and the other for all other
evanescent modes, n > N + 1.

If n > N +1, then µn = iµ̃n with µ̃n > 0. Since there is no near-cutoff mode
in this case, we have

1 + λ2
n

µ̃2
n

≤ C. (2.16)

Noting that

gn(x1) =
eiµn|x1|

−2iµn
is the Green’s function to the Helmholtz equation with wavenumber µn in R
satisfying the radiation condition at infinity, we see that vn is the solution to
the Helmholtz equation in R,

d2vn
dx2

1

+ µ2
nvn = −φ̃n

with the radiation condition at infinity. Denoting the Fourier transforms of vn
and φ̃n by v̂n and φ̂n, respectively, we can obtain that

(ξ2
1 + µ̃2

n)v̂n(ξ1) = φ̂n(ξ1),

from which together with (2.16) it follows that

(1 + λ2
n + ξ2

1)|v̂n(ξ1)| ≤ C|φ̂n(ξ1)|. (2.17)

In case that n ≤ N + 1, n 6= N , we introduce a cutoff function χ of x1 ≥ 0
such that

χ(x1) = 1 for 0 ≤ x1 ≤ 1, χ(x1) = 0 for x1 ≥ 2,

‖χ‖L∞(R+) ≤ 1, ‖ dχ
dx1
‖L∞(R+) ≤ C, ‖d

2χ

dx2
1

‖L∞(R+) ≤ C,

and define

vn,χ(x1) :=

∫ 1

0

χ(|x1 − y1|)
eiµn|x1−y1|

−2iµn
φ̃n(y1)dy1.

Since vn,χ satisfies vn,χ(x1) = vn(x1) for 0 ≤ x1 ≤ 1 and has compact support,
it holds that

‖d
`vn
dx`1
‖L2((0,1)) = ‖d

`vn,χ
dx`1

‖L2((0,1)) ≤ ‖
d`vn,χ
dx`1

‖H1(R) (2.18)

for ` = 0, 1. Noting that φ̃n is supported in (0, 1), the Fourier transform of vn,χ
with a change of variables z = x1 − y1 for x1 can be expressed as

v̂n,χ(ξ1) =
1√
2π

∫
R

∫
R
χ(|x1 − y1|)

eiµn|x1−y1|e−ix1ξ1

−2iµn
φ̃n(y1)dy1dx1

=

(∫
R
χ(|z|)e

i(µn|z|−ξ1z)

−2iµn
dz

)
φ̂n(ξ1) := Jn(ξ1)φ̂n(ξ1).

(2.19)
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Here Jn can be rewritten as

Jn(ξ1) =

∫ ∞
0

χ(|z|) e
iµnz

−iµn
cos(ξ1z)dz.

One can show by a simple computation (or see e.g., [21, Lemma 3.7]) and the
inequalities µmin ≤ |µn| ≤ Ck that

|Jn(ξ1)| ≤ C

|µn|
≤ C

µmin
and |ξ1|2|Jn(ξ1)| ≤ C(|µn|+

1

|µn|
) ≤ C

µmin
,

from which it follows that

(1 + λ2
n + |ξ1|2)|v̂n,χ| = ((1 + λ2

n)|Jn|+ |ξ1|2|Jn|)|φ̂n| ≤
C

µmin
|φ̂n| (2.20)

due to the fact that 0 ≤ λn < Ck for 0 ≤ n ≤ N + 1, n 6= N .
Therefore by combining (2.17), (2.18), (2.20) and the Plancherel theorem,

we obtain that

‖v‖2H1(Ω∗1) =

∞∑
n=0

[
(1 + λ2

n)‖vn‖2L2((0,1)) + ‖dvn
dx1
‖2L2((0,1))

]

≤ C

µ2
min

∞∑
n=0

∫
R

(1 + λ2
n + |ξ1|2)−1|φ̂n(ξ1)|2dξ1

=
C

µ2
min

‖φ̃‖2
H̃−1(Ω∞)

≤ C

µ2
min

‖φ‖2
H̃−1(Ω∗1)

,

which proves the continuity of the Newton potential by using a density argu-
ment. Finally, as vN = 0, v belongs to H1

6=N (Ω∗1), which completes the proof.
�

Now, we can show that the trace of the normal derivative of the Newton
potential on Γj is continuous.

Lemma 2.5. It holds that

∂

∂νΩ∗j

Nj : H̃−1(Ω∗j )→ H
−1/2
6=N (Γj)

is continuous,

‖ ∂

∂νΩ∗j

Nj(φ)‖H−1/2(Γj) ≤
C

µmin
‖φ‖H̃−1(Ω∗j ) for φ ∈ H̃−1(Ω∗j ).

If a near-cutoff mode does not exist in φ, then µmin is not involved.

proof. We will prove only the case of j = 1 and the other case can be proved
in the same way. We first note that for w ∈ H1/2(Γ1) there exists an extension
w̃ ∈ H1(Ω∗1) of w such that w = w̃ on Γ1 and w̃ = 0 on {1} ×Θ and satisfying

‖w̃‖H1(Ω∗1) ≤ C‖w‖H1/2(Γ1).
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Since N1(φ) for φ ∈ H̃−1(Ω∗1) solves the Helmholtz equation

(−∆− k2)N1(φ) = φ in Ω∗1,

integration by parts leads to

〈 ∂

∂νΩ∗1

N1(φ), w〉1/2,Γ1
= (∇N1(φ),∇w̃)Ω∗1

−k2(N1(φ), w̃)Ω∗1
−〈φ, w̃〉1,Ω∗1 , (2.21)

where 〈·, ·〉s,D, s > 0 represents the duality pairing between Hs(D) and its dual
space (Hs(D))∗ as the space of anti-linear functionals in a domain D with L2(D)
pivot space, i.e., 〈·, ·〉0,D = (·, ·)D. It then follows from Lemma 2.4 that

|〈 ∂

∂νΩ∗1

N1(φ), w〉1/2,Γ1
| ≤ C(‖N1(φ)‖H1(Ω∗1) + ‖φ‖H̃−1(Ω∗1))‖w̃‖H1(Ω∗1)

≤ C

µmin
‖φ‖H̃−1(Ω∗1)‖w‖H1/2(Γ1),

(2.22)

which implies the continuity of the normal derivative of the Newton potential
into H−1/2(Γ1). Since N1(φ) does not involve the N -th mode, neither does
the normal derivative of N1(φ) on Γ1, which shows that ∂N1(φ)/∂νΩ∗1

lies in

H̃
−1/2
6=N (Γ1) and the proof is completed. �

The single and double layer potentials have the following mapping properties.

Lemma 2.6. It holds that

Sj : H−1/2(Γj)→ H1
6=N (Ω∗j ),

Dj : H1/2(Γj)→ H1
6=N (Ω∗j )

are continuous,

‖Sj(ψ)‖H1(Ω∗j ) ≤
C

µmin
‖ψ‖H−1/2(Γj) for ψ ∈ H−1/2(Γj),

‖Dj(ψ)‖H1(Ω∗j ) ≤
C

µmin
‖ψ‖H1/2(Γj) for ψ ∈ H1/2(Γj).

If a near-cutoff mode does not exist in ψ, then µmin is not involved.

proof. For ψ ∈ H−1/2(Γj) and φ ∈ C∞0 (Ω∗j ), we obtain by using Lemma 2.4
that

〈Sj(ψ), φ〉1,Ω∗j =

∫∫
Ω∗j

[∫
Γj

G(x, y)ψ(y)dy2

]
φ̄(x)dx

=

∫
Γj

ψ(y)

[∫∫
Ω∗j

G(x, y)φ̄(x)dx

]
dy2

≤ ‖ψ‖H−1/2(Γj)‖Nj(φ̄)‖H1/2(Γj) ≤
C

µmin
‖ψ‖H−1/2(Γj)‖φ‖H̃−1(Ω∗j ).
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Since C∞0 (Ω∗j ) is dense in H̃−1(Ω∗j ), it follows that

‖Sj(ψ)‖H1(Ω∗j ) = sup
0 6=φ∈C∞0 (Ω∗j )

|〈Sj(ψ), φ〉1,Ω∗j |
‖φ‖H̃−1(Ω∗j )

≤ C

µmin
‖ψ‖H−1/2(Γj),

which is the required estimate for the single layer potential. Finally, since Sj(ψ)
does not have the N -th mode, it is in H1

6=N (Ω∗j ).

For the double layer potential, we take ψ ∈ H1/2(Γj) and φ ∈ C∞0 (Ω∗j ).
Then, noting that νΩ12

= νΩ∗j
on Γj , it can be shown by Lemma 2.5 that

〈Dj(ψ), φ〉1,Ω∗j =

∫∫
Ω∗j

[∫
Γj

∂G

∂νΩ12,y1

(x, y)ψ(y)dy2

]
φ̄(x)dx

=

∫
Γj

ψ(y)
∂

∂νΩ∗j ,y1

[∫∫
Ω∗j

G(x, y)φ̄(x)dx

]
dy2

≤ ‖ψ‖H1/2(Γj)‖
∂

∂νΩ∗j

Nj(φ̄)‖H−1/2(Γj) ≤
C

µmin
‖ψ‖H1/2(Γj)‖φ‖H̃−1(Ω∗j ).

Since C∞0 (Ω∗j ) is dense in H̃−1(Ω∗j ), it follows that

‖Dj(ψ)‖H1(Ω∗j ) = sup
06=φ∈C∞0 (Ω∗j )

|〈Dj(ψ), φ〉1,Ω∗j |
‖φ‖H̃−1(Ω∗j )

≤ C

µmin
‖ψ‖H1/2(Γj),

which completes the proof of the continuity of the the double layer potential.
At last, as the N -th mode is not involved in Dj(ψ), Dj(ψ) is in H1

6=N (Ω∗j ) and
the proof is completed. �

Now we can estimate the non-cutoff components of the right-going and the
left-going components of the solution.

Lemma 2.7. It holds that

‖uright
6=N ‖

2
H1/2(Γ1) + ‖uleft

6=N‖2H1/2(Γ2) ≤
C

µ2
min

‖uex‖2H1(Ω).

If a near-cutoff mode does not exist in uright and uleft, then µmin is not involved.

proof. Let η = min{1, L} and Ω1,η = (0, η) × Θ = Ω12 ∩ Ω∗1. The formulas
(2.15) says

uright
6=N = S1(

∂uex

∂νΩ12

)− D1(uex)

and Lemma 2.6 yields that

‖S1(
∂uex

∂νΩ12

)‖H1(Ω1,η) ≤ ‖S1(
∂uex

∂νΩ12

)‖H1(Ω∗1) ≤
C

µmin
‖ ∂u

ex

∂νΩ12

‖H−1/2(Γ1),

‖D1(uex)‖H1(Ω1,η) ≤ ‖D1(uex)‖H1(Ω∗1) ≤
C

µmin
‖uex‖H1/2(Γ1).
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It then follows that

‖uright
6=N ‖H1(Ω1,η) ≤

C

µmin
(‖ ∂u

ex

∂νΩ12

‖H−1/2(Γ1) + ‖uex‖H1/2(Γ1)) ≤
C

µmin
‖uex‖H1(Ω).

(2.23)
Here we used the estimates ‖ ∂u

ex

∂νΩ12
‖H−1/2(Γ1) ≤ C‖uex‖H1(Ω) of the normal

derivative of uex on Γ1 resulting from

|〈− ∂uex

∂νΩ12

, φ〉1/2,Γ1
| = |(∇uex,∇φ)Ω1 − k2(uex, φ)Ω1 | ≤ C‖uex‖H1(Ω1)‖φ‖H1(Ω1)

for φ ∈ H1(Ω1). As the same estimate for uleft
6=N holds true, the desired estimate

follows. �

Remark 2.8. Since the series representations of uright
6=N and uleft

6=N given in Ω12

can be extended to the domains Ωδ1 and Ωδ2, Lemma 2.7 for the extended uright
6=N

and uleft
6=N still holds with Γj replaced by Γδj .

2.4. Estimates of cutoff components
We will estimate the cutoff components of uright and uleft,

uright
N (x1, ·) = uexN |Γ1L0(x1)YN and uleft

N (x1, ·) = uexN |Γ2LL(x1)YN .

Lemma 2.9. The cutoff components satisfy the estimates

‖uright
N ‖H1/2(Γ1) ≤ C‖uex‖H1(Ω) and ‖uleft

N ‖H1/2(Γ2) ≤ C‖uex‖H1(Ω).

proof. Since uright
N = uexN |Γ1 , we have

‖uright
N ‖H1/2(Γ1) = ‖uexN ‖H1/2(Γ1) ≤ ‖uex‖H1/2(Γ1) ≤ C‖uex‖H1(Ω),

For uleft
N we use the fact uleft

N = uexN |Γ2 to derive the same estimate as above,
which completes the proof. �

2.5. Stability
We invoke all estimates in the previous subsections to establish the stability

result of the solution to the problem (2.9)-(2.11).

Theorem 2.10. The unique solution (u, u1, u2) ∈ W to the problem (2.9)-
(2.11) satisfies

‖(u, u1, u2)‖W ≤ C‖f‖L2(Ω). (2.24)

proof. We know that u = uex|Ω, u1 = uright|Γ1
and u2 = uleft|Γ2

. Due to the
orthogonality of Yn, it holds that

‖uright‖2H1/2(Γ1) = ‖uright
N ‖2H1/2(Γ1) + ‖uright

6=N ‖
2
H1/2(Γ1).

By using Lemma 2.7, Lemma 2.9 and (2.12), we prove that

‖uright‖H1/2(Γ1), ‖uleft‖H1/2(Γ2) ≤
C

µmin
‖f‖L2(Ω).

Thus, combining it with the stability (2.12) leads us to the stability estimate
(2.24). �
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2.6. Variational reformulation

In this subsection we reformulate the problem (2.9)-(2.11) in a weak form.
The problem (2.9)-(2.11) can be written as a variational problem that seeks for
(u, u1, u2) ∈W satisfying

Aγ((u, u1, u2), (v, v1, v2)) = (f, v)Ω for all (v, v1, v2) ∈W, (2.25)

where

Aγ((u, u1, u2), (v, v1, v2)) = a((u, u1, u2), v)− γb((u, u1, u2), (v1, v2))

with

a((u, u1, u2), v) = (∇u,∇v)Ω − k2(u, v)Ω −
∑

i,j=1,2

〈Tij(ui), v〉1/2,Γj ,

b((u, u1, u2), (v1, v2)) =
∑

i,j=1,2,i6=j

[u− uj − Pij(ui), vj ]Γj

for a constant γ ∈ R. Here [·, ·]Γj stands for the H1/2(Γj)-inner product defined
by

[φ, ψ]Γj =

∞∑
n=0

(1 + λ2
n)1/2φnψ̄n

for φ =
∑∞
n=0 φnYn and ψ =

∑∞
n=0 ψnYn in H1/2(Γj). We note that since the

problem (2.25) splits into two parts independent of γ ∈ R

a((u, u1, u2), v) = (f, v)Ω for v ∈ H1(Ω),

b((u, u1, u2), (v1, v2)) = 0 for (v1, v2) ∈ H1/2(Γ1)×H1/2(Γ2),

the problem (2.25) for different constants γ are all equivalent to each other.
Consequently, Theorem 2.3 and Theorem 2.10 establish the following result.

Lemma 2.11. The problem (2.25) for any γ ∈ R has a unique solution (u, u1, u2)
in W satisfying the stability estimate (2.24), and solutions for different γ ∈ R
all coincide with each other.

2.7. Adjoint problem

The subsection is devoted to introducing a reduced problem for the adjoint
problem, which is analogous to the problem (2.25). The reduced problem is
obtained by removing the domain Ω12 from the adjoint problem

A(φ, u) = (φ, f)Ω for φ ∈ H1(Ω̃) (2.26)

of (2.2). The result in this subsection will be used for the error analysis based on
the duality argument in studying the approximation method in the next section.
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Let T ∗ij : H1/2(Γj) → H−1/2(Γi) and P ∗ij : H−s(Γj) → H−s(Γi) be the

adjoint operators of Tij : H1/2(Γi) → H−1/2(Γj) and Pij : Hs(Γi) → Hs(Γj)
for −1/2 ≤ s ≤ 1/2, respectively, that is, for φi ∈ H1/2(Γi) and ψj ∈ H1/2(Γj)

〈Tij(φi), ψj〉1/2,Γj = 〈φi, T ∗ij(ψj)〉1/2,Γi ,

and for φi ∈ Hs(Γi) and ψj ∈ H−s(Γj) with −1/2 ≤ s ≤ 1/2

〈Pij(φi), ψj〉s,Γj = 〈φi, P ∗ij(ψj)〉s,Γi .

These adjoint operators are, in fact, defined as

T ∗ij(ψ) =
ψN
L
YN +

∑
n 6=N

−iµne
iµnLψnYn, T ∗jj(ψ) = −ψN

L
YN +

∑
n 6=N

iµnψnYn,

for ψ ∈ H1/2(Γi). Also, for i 6= j and −1/2 ≤ s ≤ 1/2

P ∗ij(φ) =
∑
n 6=N

eiµnLφnYn for φ =

∞∑
n=0

φnYn ∈ Hs(Γj).

We study a reduced problem posed on Ω for the problem (2.26) by using the
adjoint operators T ∗ij and P ∗ij instead of Tij and Pij . To this end, we consider
the decomposition of the solution in Ω12,

uex(x1, ·) = uexN |Γ2
LL(x1)YN +

∑
n 6=N

A∗ne
−iµnx1Yn (:= u∗right)

+ uexN |Γ1
L0(x1)YN +

∑
n 6=N

B∗ne
iµnx1Yn (:= u∗left)

for some constants A∗n and B∗n. Denoting w1 = u∗left|Γ1 and w2 = u∗right|Γ2 , we
can see

∂uex

∂νΩ1

= T ∗11(w1) + T ∗12(w2) on Γ1 and
∂uex

∂νΩ2

= T ∗21(w1) + T ∗22(w2) on Γ2

(2.27)
and

uex = w1 + P ∗12(w2) on Γ1 and uex = w2 + P ∗21(w1) on Γ2.

Therefore, the adjoint problem (2.26) can be reduced to a problem seeking for
(w,w1, w2) ∈W satisfying

A∗γ((v, v1, v2), (w,w1, w2)) = (v, f)Ω for (v, v1, v2) ∈W, (2.28)

where

A∗γ((v, v1, v2), (w,w1, w2)) = (∇v,∇w)Ω − k2(v, w)Ω

−
∑

i,j=1,2

〈v, T ∗ij(wj)〉Γi − γ
∑

i,j=1,2,i6=j

[vi, w − wi − P ∗ijwj ]Γi

for a constant γ ∈ R.
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Lemma 2.12. For any γ ∈ R, there exists a unique solution (w,w1, w2) ∈ W
independent of γ to the problem (2.28) satisfying

‖(w,w1, w2)‖W ≤ C‖f‖L2(Ω).

In addition, for g ∈ L2(Γj) there exists a unique solution (w,w1, w2) ∈ W to
the problem

A∗γ((v, v1, v2), (w,w1, w2)) = (v, g)Γj for (v, v1, v2) ∈W (2.29)

satisfying
‖(w,w1, w2)‖W ≤ C‖g‖L2(Γj).

proof. The same arguments as those used for the primal problem (2.25) in
the proceeding subsections provide the well-posedness of the problem (2.28)
independent of γ ∈ R.

On the other hand, we note that the problem (2.29) is a variational formu-
lation of the Helmholtz equation in Ω with f = 0 but a source g is provided on
the boundary Γj in the form

∂w

∂νΩj

= T ∗jj(wj) + T ∗ji(wi) + g on Γj

with the other boundary condition of (2.27) on Γi (i 6= j) unchanged. This
problem is, in turn, equivalent to the full problem (2.26) with a line source gδΓj
on Γj . Since the line source is in H̃−1(Ω̃) and the problem (2.26) is well-posed

for f = gδΓj ∈ H̃−1(Ω̃), the assertion can follow. �

3. Approximate method and convergence

The boundary conditions of the problem (2.9)-(2.11) resulting from truncat-
ing Ω12 involve the DtN and DtD operators, Tij and Pij , defined by infinite
series. In order to apply a discretization technique such as the finite element
method, the DtN and DtD operators need to be approximated by truncated
series. We define approximate operators for the DtN and DtD operators,

TMij (ψ) =
ψN
L

+

M∑
n=0,n6=N

−iµne
iµnLψnYn, TMii (ψ) = −ψN

L
+

M∑
n=0,n6=N

iµnψnYn

for ψ ∈ H1/2(Γi). Also, for i 6= j and −1/2 ≤ s ≤ 1/2

PMij (φ) =

M∑
n=0,n6=N

eiµnLφnYn for φ =

∞∑
n=0

φnYn ∈ Hs(Γi).

By replacing the exact boundary conditions (2.10) and (2.11) with the truncated
counterparts we introduce a problem in a variational form for an approximate
solution (uM , uM1 , uM2 ) ∈W satisfying

AMγ ((uM , uM1 , uM2 ), (v, v1, v2)) = (f, v)Ω for all (v, v1, v2) ∈W, (3.1)
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where

AMγ ((u, u1, u2), (v, v1, v2)) = aM ((u, u1, u2), v)− γbM ((u, u1, u2), (v1, v2))

with

aM ((u, u1, u2), v) = (∇u,∇v)Ω − k2(u, v)Ω −
∑

i,j=1,2

〈TMij (ui), v〉1/2,Γj ,

bM ((u, u1, u2), (v1, v2)) =
∑

i,j=1,2,i6=j

[u− uj − PMij (ui), vj ]Γj .

As done for the problem (2.25) in Subsection 2.6, the problem (3.1) also can
split into two parts for any γ ∈ R,

aM ((u, u1, u2), v) = (f, v)Ω for v ∈ H1(Ω), (3.2)

bM ((u, u1, u2), (v1, v2)) = 0 for (v1, v2) ∈ H1/2(Γ1)×H1/2(Γ2). (3.3)

It implies that the problem (3.1) for different constants γ are all equivalent to
each other, and allows us to infer that if the problem with a certain constant
γ has a unique solution in W , then all other problems (3.1) with any γ share
the same unique solution. Thus, we will establish that there exists a constant
γ ∈ R such that the problem (3.1) is well-posed and solutions to the problem
(3.1) converge exponentially to the solution to the problem (2.25) as M tends
toward infinity.

Remark 3.1. The boundary condition (3.3) can be imposed by using the L2(Γj)-
inner product instead of the H1/2(Γj)-inner product. It results in an equivalent
problem to find (u, u1, u2) ∈W satisfying

ÃM ((u, u1, u2), (v, v1, v2)) = (f, v)Ω for all (v, v1, v2) ∈ V, (3.4)

where V = H1(Ω) × L2(Γ1) × L2(Γ2) and ÃM (·, ·) is a sesquilinear form on
W × V given by replacing −γbM (·, ·) in AMγ (·, ·) with b̃M (·, ·) defined by

b̃M ((u, u1, u2), (v1, v2)) = (u− u1 − PM21 (u2), v1)Γ1
+ (u− PM12 (u1)− u2, v2)Γ2

.

Since it is more appropriate in the well-posedness analysis to manipulate H1/2(Γj)-
norms of uj than L2(Γj)-norms, we take this problem (3.1) in the analysis, how-
ever a finite element approximation will be applied to the problem (3.4) based
on the L2-inner product.

3.1. Properties of the DtN and DtD operators and convergence of truncated
operators

In this subsection, we examine some properties of the DtN and DtD operators
and the exponential convergence of truncated operators. The first one is the
commuting properties of Tij and Pij .
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Lemma 3.2. Let i, j = 1, 2 and i 6= j. It holds that

TiiPji = PjiTjj (3.5)

and
TijPji = PijTji. (3.6)

Here Tij : H1/2(Γi) → H−1/2(Γj) and Pij is understood as an operator from
H1/2(Γi) to H1/2(Γj) or from H−1/2(Γi) to H−1/2(Γj) depending on its position
in the composition.

proof. For φ =
∑∞
n=0 φnYn in H1/2(Γj), it is easy to show that

TiiPji(φ) =
∞∑
n=0

iµne
iµnLφnYn = PjiTjj(φ),

which leads to (3.5). Similarly, the second identity (3.6) can be obtained since

TijPji(φ) =

∞∑
n=0

−iµne
2iµnLφnYn = PijTji(φ),

which completes the proof. �

For u,w ∈ H1(Ω) and ui, wi ∈ H1/2(Γi), we denote the terms involving DtN
operators in Aγ(·, ·) and A∗γ(·, ·) by

T ((u1, u2), w) =
∑

i,j=1,2

〈Tij(ui), w〉1/2,Γj ,

T ∗(u, (w1, w2)) =
∑

i,j=1,2

〈u, T ∗ij(wj)〉1/2,Γi .
(3.7)

These two sesquilinear forms have the duality property.

Lemma 3.3. Assume that u = ui + Pji(uj) on Γi and w = wi + P ∗ij(wj) on Γi
for ui, wi ∈ H1/2(Γi), i, j = 1, 2, i 6= j. Then it holds that

T ((u1, u2), w) = T ∗(u, (w1, w2)). (3.8)

proof. It can be shown by Lemma 3.2 that for i 6= j,

〈u, T ∗ij(wj)〉1/2,Γi = 〈ui + Pji(uj), T
∗
ij(wj)〉1/2,Γi

= 〈Tij(ui) + TijPji(uj), wj〉1/2,Γj
= 〈Tij(ui) + PijTji(uj), wj〉1/2,Γj
= 〈Tij(ui), wj〉1/2,Γj + 〈Tji(uj), P ∗ij(wj)〉1/2,Γi ,
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from which it follows that∑
i6=j

〈u, T ∗ij(wj)〉1/2,Γi = 〈Tij(ui), wj〉1/2,Γj + 〈Tji(uj), P ∗ij(wj)〉1/2,Γi

+ 〈Tji(uj), wi〉1/2,Γi + 〈Tij(ui), P ∗ji(wi)〉1/2,Γj
=
∑
i6=j

〈Tij(ui), w〉1/2,Γj .

(3.9)

By the similar way, we can show

〈u, T ∗ii(wi)〉1/2,Γi = 〈Tii(ui), wi〉1/2,Γi + 〈Tjj(uj), P ∗ji(wi)〉1/2,Γj ,

which yields ∑
i=1,2

〈u, T ∗ii(wi)〉1/2,Γi =
∑
i=1,2

〈Tii(ui), w〉1/2,Γi . (3.10)

The proof is completed by combining (3.9) and (3.10). �

The truncated adjoint operators T ∗Mij and P ∗Mij can be defined analogously

to TMij and PMij . Denoting by T M and T ∗M sesquilinear forms of (3.7) with

Tij , T
∗
ij replaced by TMij , T ∗Mij , respectively, one can easily show that the duality

property for the truncated operators T M and T ∗M similar to (3.8) still holds
as the truncated operators satisfy the same commuting properties as (3.5) and
(3.6).

Lemma 3.4. Assume that u = ui + PMji (uj) on Γi and w = wi + P ∗Mij (wj) on

Γi for ui, wi ∈ H1/2(Γi), i, j = 1, 2, i 6= j. Then it holds that

T M ((u1, u2), w) = T ∗M (u, (w1, w2)).

We will establish the exponential convergence of approximate DtN and DtD
operators.

Lemma 3.5. Let w be a radiating function in H1(Ωδj) going out of Ωj such
that the non-cutoff component of w can be written as

w6=N (x) =
∑
n 6=N

wne
(−1)j+1iµn(x1−α)Yn(x2) in Ωδj ,

where α = −δ for j = 1 and α = L + δ for j = 2. If φ is a trace of w on Γj,
then

‖(Tji − TMji )(φ)‖H−1/2(Γi) ≤ Ce
−µ̃M+1δ‖w>M‖H1/2(Γδj )

, (3.11)

‖(Pji − PMji )(φ)‖H1/2(Γj) ≤ Ce
−µ̃M+1δ‖w>M‖H1/2(Γδj )

(3.12)

for M > N .
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proof. Since the n-th coefficients φn and wn of φ and w|Γδj , respectively, satisfy

φn = e−µ̃nδwn for n > N,

it can be shown by using (2.8) that

‖(Tji − TMji )(φ)‖2H−1/2(Γi)
≤

∞∑
n=M+1

(1 + λ2
n)−1/2|µn|2|φn|2

≤ Ce−2µ̃M+1δ
∞∑

n=M+1

(1 + λ2
n)1/2|wn|2 ≤ Ce−2µ̃M+1δ‖w>M‖2H1/2(Γδj )

,

(3.13)
which proves (3.11). In the first inequality, we used that e−2µ̃M+1L < 1 in case
that i 6= j. The convergence (3.12) of the DtD operators can be proved in the
same way. �

The convergence of the truncated adjoint DtN operators can be derived in
the same idea as the above.

Lemma 3.6. Let w be the function in H1(Ωδj) coming into Ωj such that the
non-cutoff component of w can be written as

w 6=N (x) =
∑
n 6=N

wne
(−1)j+1iµn(x1−α)Yn(x2) in Ωδj ,

where α = −δ for j = 1 and α = L + δ for j = 2. If φ is a trace of w on Γj,
then

‖(T ∗ij − T ∗Mij )(φ)‖H−1/2(Γi) ≤ Ce
−µ̃M+1δ‖w>M‖H1/2(Γδj )

(3.14)

for M > N .

As a consequence of Lemma 3.5 and Remark 2.8 without a near-cutoff mode,
we can have that for j = 1, 2

‖(T1j − TM1j )(uright)‖H−1/2(Γj) ≤ Ce
−µ̃M+1δ‖uright

>M ‖H1/2(Γδ1) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω),

‖(T2j − TM2j )(uleft)‖H−1/2(Γj) ≤ Ce
−µ̃M+1δ‖uleft

>M‖H1/2(Γδ2) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω).

(3.15)
The convergence of the Dirichlet data can also follow

‖(P12 − PM12 )(uright)‖H−1/2(Γ2) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω),

‖(P21 − PM21 )(uleft)‖H−1/2(Γ1) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω).
(3.16)

Similarly, by Lemma 3.6 it holds that for j = 1, 2

‖(T ∗j1 − T ∗Mj1 )(u∗left)‖H−1/2(Γj) ≤ Ce
−µ̃M+1δ‖u∗left

>M ‖H1/2(Γδ1) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω),

‖(T ∗j2 − T ∗Mj2 )(u∗right)‖H−1/2(Γj) ≤ Ce
−µ̃M+1δ‖u∗right

>M ‖H1/2(Γδ2) ≤ Ce−µ̃M+1δ‖uex‖H1(Ω).

(3.17)
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since u∗left
>M = uright

>M and u∗right
>M = uleft

>M for M > N . These exponential con-
vergence (3.15), (3.16) and (3.17) of the DtN and DtD operators for radiating
functions will play a crucial role in the convergence analysis.

The next lemma deals with some properties of the DtD operators.

Lemma 3.7. Assume that i 6= j and M > N . Then it holds that

‖(Pij − PMij )(φ)‖H1/2(Γj) ≤ Ce
−µ̃M+1L‖φ‖H1/2(Γi) (3.18)

for φ ∈ H1/2(Γi). In addition, for 0 < ε < 1/2 and vi ∈ H1/2(Γi), it holds that

|[PMij (vi), vj ]Γj | ≤ Cp‖vi‖H1/2−ε(Γi)‖vj‖H1/2−ε(Γj) (3.19)

for a positive constant Cp independent of M .

proof. The convergence (3.18) of PMij for φ ∈ H1/2(Γi) can be proved as those

in Lemma 3.5. For (3.19), let v` =
∑∞
n=0 v`,nYn, ` = 1, 2. We note that there

exists a constant Cp (that may depend on L but is independent of M) such that

(1 + λ2
n)1/2 ≤ (1 + k2)ε(1 + λ2

n)1/2−ε ≤ Cp(1 + λ2
n)1/2−ε for n ≤ N,

e−µ̃nL ≤ Cp(1 + λ2
n)−ε for n > N.

By using the inequalities, we derive that

|[PMij (vi), vj ]Γj | ≤
N∑
n=0

(1 + λ2
n)1/2|vi,n||vj,n|+

M∑
n=N+1

e−µ̃nL(1 + λ2
n)1/2|vi,n||vj,n|

≤ Cp‖vi‖H1/2−ε(Γi)‖vj‖H1/2−ε(Γj),

which completes the proof of (3.19). �

3.2. Existence and uniqueness of approximate solutions

In this subsection we will show that the problem (3.1) admits a unique
solution in W for any constant γ ∈ R when M is sufficiently large. We first
consider the uniqueness of solutions to the problem (3.1), which is established
by following the idea as that used in [11].

Lemma 3.8. For any constant γ ∈ R, there exists a positive constant Muniq >
N such that if M > Muniq, then the problem (3.1) has at most one solution.

proof. To prove the lemma, we use a proof by contradiction. As addressed
in the introductory part of this section, it is enough to find a constant γ ∈ R
and Muniq > N for which the solution to the problem (3.1) is unique for all
M > Muniq.

Suppose that there exists an increasing sequence of integers Mn > N such
that Mn →∞ as n→∞ and the problem (3.1) with f = 0 has a non-trivial so-
lution (uMn , uMn

1 , uMn
2 ) in W satisfying ‖(uMn , uMn

1 , uMn
2 )‖W = 1 for each Mn.

Since W is compactly embedded in W ε := H1−ε(Ω)×H1/2−ε(Γ1)×H1/2−ε(Γ2)
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for 0 < ε < 1/2, there exists a subsequence (uMn , uMn
1 , uMn

2 ) (with the same
notation for the sake of simple presentation) that converges to (u, u1, u2) in W ε.
Step I: We will show that (u, u1, u2) = 0. To do this, recalling the definition of
T and T Mn , we denote

D(u, v) = (∇u,∇v)Ω − k2(u, v)Ω,

B(u, (v1, v2)) = [u, v1]Γ1 + [u, v2]Γ2 ,

P((u1, u2), (v1, v2)) = [u1 + P21(u2), v1]Γ1 + [P12(u1) + u2, v2]Γ2 ,

PMn((u1, u2), (v1, v2)) = [u1 + PMn
21 (u2), v1]Γ1 + [PMn

12 (u1) + u2, v2]Γ2 .

Then it holds that

Aγ((u, u1, u2), (v, v1, v2))

= D(u, v)− T ((u1, v1), v)− γ
[
B(u, (v1, v2))− P((u1, u2), (v1, v2))

]
,

AMn
γ ((u, u1, u2), (v, v1, v2))

= D(u, v)− T Mn((u1, v1), v)− γ
[
B(u, (v1, v2))− PMn((u1, u2), (v1, v2))

]
.

From the equation

AMn
γ ((uMn , uMn

1 , uMn
2 ), (φ, φ1, φ2)) = 0 for all φ ∈ C∞(Ω̄), φi ∈ C∞(Γ̄i)

it can be shown that

D(uMn − u, φ)− γB(uMn − u, (φ1, φ2))

−T Mn((uMn
1 − u1, u

Mn
2 − u2), φ)− (T Mn − T )((u1, u2), φ)

+γPMn((uMn
1 − u1, u

Mn
2 − u2), (φ1, φ2)) + γ(PMn − P)((u1, u2), (φ1, φ2))

+Aγ((u, u1, u2), (φ, φ1, φ2)) = 0.
(3.20)

We shall make estimates of all terms except the last one in (3.20), which reveals
that they converge to zero as n → ∞. We first use a generalized Schwarz
inequality to show

|D(uMn − u, φ)| ≤ C‖uMn − u‖H1−ε(Ω)‖φ‖H1+ε(Ω). (3.21)

Similarly, a generalized Schwarz inequality and a trace inequality give

|B(uMn − u, (φ1, φ2))| ≤
∑
j=1,2

‖uMn − u‖H1/2−ε(Γj)‖φj‖H1/2+ε(Γj)

≤ C
∑
j=1,2

‖uMn − u‖H1−ε(Ω)‖φj‖H1/2+ε(Γj).
(3.22)

The boundedness of duality pairings, the continuity of the operator TMn
ij and a

trace inequality come together to prove that

|T Mn((uMn
1 − u1, u

Mn
2 − u2), φ)| ≤

∑
i,j=1,2

‖TMn
ij (uMn

i − ui)‖H−1/2−ε(Γj)‖φ‖H1/2+ε(Γj)

≤ C
∑
j=1,2

‖uMn
j − uj‖H1/2−ε(Γj)‖φ‖H1+ε(Ω)

(3.23)
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and

|(T Mn − T )((u1, u2), φ)| ≤ C
∑

i,j=1,2

‖(Tij − TMn
ij )(ui)‖H−1/2−ε(Γj)‖φ‖H1/2+ε(Γj)

≤ C
∑

i,j=1,2

1

(1 + λ2
Mn+1)ε/2

‖ui‖H1/2(Γi)‖φ‖H1/2+ε(Γj).

(3.24)
A generalized Schwarz inequality again yields that

|PMn((uMn
1 − u1, u

Mn
2 − u2), (φ1, φ2))| ≤ C

∑
i,j=1,2

‖uMn
j − uj‖H1/2−ε(Γj)‖φi‖H1/2+ε(Γi),

(3.25)
and by (3.18) we are led to

|(PMn − P)((u1, u2), (φ1, φ2))| ≤
∑
i 6=j

‖(Pij − PMn
ij )(ui)‖H1/2(Γj)‖φj‖H1/2(Γj)

≤
∑
i 6=j

e−µ̃Mn+1L‖ui‖H1/2(Γi)‖φj‖H1/2(Γj).

(3.26)
Since all terms in the right hand sides of the above estimates (3.21)-(3.26)
converge to 0 as n→∞, passing to the limit of (3.20) leads

Aγ((u, u1, u2), (φ, φ1, φ2)) = 0.

The uniqueness of solutions to the problem (2.25) shows that (u, u1, u2) = 0.
Step II: We will show that the convergence of (uMn , uMn

1 , uMn
2 ) to 0 in W ε

contradicts that ‖(uMn , uMn
1 , uMn

2 )‖W = 1. We begin with the identity

0 = AMn
γ ((uMn , uMn

1 , uMn
2 ), (uMn , uMn

1 , uMn
2 ))

= ‖uMn‖2H1(Ω) − (k2 + 1)‖uMn‖2L2(Ω) − T
Mn((uMn

1 , uMn
2 ), uMn)

− γ
(

[uMn − uMn
1 − PMn

21 (uMn
2 ), uMn

1 ]Γ1 + [uMn − uMn
2 − PMn

12 (uMn
1 ), uMn

2 ]Γ2

)
.

(3.27)
By using the fact that uMn = uMn

i +PMn
ji (uMn

j ) on Γi and invoking the definition

of TMn
ij , we can show that for uMn

1 =
∑∞
`=0 u

Mn

1,` Y` and uMn
2 =

∑∞
`=0 u

Mn

2,` Y`

T Mn((uMn
1 , uMn

2 ), uMn) =
∑

i,j=1,2

〈TMn
ij (uMn

i ), uMn〉1/2,Γj

=

N−1∑
`=0

4µ`=(eiµ`L)<(uMn

1,` ū
Mn

2,` )−
Mn∑

`=N+1

µ̃`(1− e−2µ̃`L)(|uMn

1,` |
2 + |uMn

2,` |
2)

+
1

L

(
2<(uMn

1,N ū
Mn

2,N )− (|uMn

1,N |
2 + |uMn

2,N |
2)
)
,

(3.28)
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which is real. Since µ̃`(1−e−2µ̃`L) > 0 for ` > N and the last term for the N -th
mode is non-positive, by using the estimate of the finite sum

N−1∑
`=0

4µ`=(eiµ`L)<(uMn

1,` ū
Mn

2,` ) ≤ Ct‖uMn
1 ‖H1/2−ε(Γ1)‖uMn

2 ‖H1/2−ε(Γ2)

for a constant Ct > 0 independent of Mn, we can obtain that

T Mn((uMn
1 , uMn

2 ), uMn) ≤ Ct‖uMn
1 ‖H1/2−ε(Γ1)‖uMn

2 ‖H1/2−ε(Γ2). (3.29)

On the other hand, the terms of the H1/2-inner product in (3.27) are esti-
mated by using (3.19), inequalities of arithmetic-geometric means and a trace
inequality with a trace constant Ctr, as

− γ<
(

[uMn − uMn
j − PMn

ij (uMn
i ), uMn

j ]Γj

)
≥ γ

(
1

2
‖uMn

j ‖
2
H1/2(Γj)

− Ctr
2
‖uMn‖2H1(Ω) −

Cp
2

(
‖uMn

i ‖
2
H1/2−ε(Γi)

+ ‖uMn
j ‖

2
H1/2−ε(Γj)

))
.

(3.30)
We use (3.29) and (3.30) in the real part of (3.27) to obtain

‖uMn‖2H1(Ω) +
γ

2
(‖uMn

1 ‖2H1/2(Γ1) + ‖uMn
2 ‖2H1/2(Γ2))

≤ (k2 + 1)‖uMn‖2L2(Ω) + γCtr‖uMn‖2H1(Ω) + (γCp + Ct)(‖uMn
1 ‖2H1/2−ε(Γ1) + ‖uMn

2 ‖2H1/2−ε(Γ2)).

We take a positive constant γ so that γCtr < 1/2 and have

C‖(uMn ,uMn
1 , uMn

2 )‖2W ≤
1

2
‖uMn‖2H1(Ω) +

γ

2
(‖uMn

1 ‖2H1/2(Γ1) + ‖uMn
2 ‖2H1/2(Γ2))

≤ (k2 + 1)‖uMn‖2L2(Ω) + (γCp + Ct)(‖uMn
1 ‖2H1/2−ε(Γ1) + ‖uMn

2 ‖2H1/2−ε(Γ2)).

Since the right hand side tends to zero as n goes to infinity, it contradicts the
fact that ‖(uMn , uMn

1 , uMn
2 )‖W = 1 and the proof is completed. �

Lemma 3.9. Let Muniq be the constant defined in Lemma 3.8. If M > Muniq,
then the problem (3.1) for any constant γ has a unique solution.

proof. It suffices to show that there exists a constant γ for which the problem
(3.1) with M > Muniq has a unique solution.

As presented in Step II of Lemma 3.8, by (3.29) and (3.30) with γ satisfying
γCtr < 1/2, we can show that

|AMγ ((u, u1, u2), (u, u1, u2))| ≥ 1

2
‖u‖2H1(Ω) +

γ

2

(
‖u1‖2H1/2(Γ1) + ‖u2‖2H1/2(Γ2)

)
− (k2 + 1)‖u‖2L2(Ω) − (γCp + Ct)

(
‖u1‖2H1/2−ε(Γ1) + ‖u2‖2H1/2−ε(Γ2)

)
,

(3.31)
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which is a G̊arding type inequality for AMγ (·, ·). It implies that there exists a
positive constant C independent of (u, u1, u2) ∈W such that

‖(u, u1, u2)‖W ≤ C

(
sup

(v,v1,v2)∈W

|AMγ ((u, u1, u2), (v, v1, v2))|
‖(v, v1, v2)‖W

+ ‖(u, u1, u2)‖W ε

)

with the obvious product norm ‖ · ‖W ε of W ε. Since the mapping (u, u1, u2) 7→
AMγ ((u, u1, u2), ·) from W to its dual space W ∗ as the space of anti-linear func-
tionals is continuous and injective (by Lemma 3.8), and W is compactly embed-
ded to W ε, Peetre-Tartar lemma (see e.g., [9]) gives the inf-sup condition

‖(u, u1, u2)‖W ≤ C sup
(v,v1,v2)∈W

|AMγ ((u, u1, u2), (v, v1, v2))|
‖(v, v1, v2)‖W

for some constant C. SinceAMγ ((u, u1, u2), (v, v1, v2)) = AMγ ((v̄, v̄1, v̄2), (ū, ū1, ū2)),
the inf-sup condition for the adjoint problem holds as well and so the proof is
completed. �

3.3. Convergence and stability of approximate solutions

We are in a position to prove the main convergence result of approximate
solutions.

Theorem 3.10. Assume that each cavity Ωj includes a straight waveguide Ωδj
of width δ with Γj on its boundary, which does not include any inclusion or wave
source, as in Figure 1. Let (u, u1, u2) and (uM , uM1 , uM2 ) in W be the solutions
to the problems (2.25) and (3.1), respectively. Then there exists a constant
Mconv > Muniq such that for M > Mconv

‖(u, u1, u2)− (uM , uM1 , uM2 )‖W ≤ Ce−µ̃M+1δ‖u‖H1(Ω). (3.32)

proof. Let (eM , eM1 , eM2 ) = (u, u1, u2) − (uM , uM1 , uM2 ) be the error function.
The proof for the error estimate consists of five steps. Step I through Step IV
are devoted to the estimation of the error eM in Ω and Step V completes the
proof by providing the error estimates of eMj in H1/2(Γj).
Step I: In Step I, we prove that for M > N

‖eM‖2H1(Ω) − (k2 + 1)‖eM‖2L2(Ω)

≤ C

(
e−µ̃M+1δ‖u‖H1(Ω)‖eM‖H1(Ω) +

N−1∑
n=0

4µn=(eiµnL)<(eM1,nē
M
2,n)

)
.

(3.33)

To do this, we begin with the equations for the error function

D(eM , v)− T M ((eM1 , eM2 ), v) = (T − T M )((u1, u2), v) for all v ∈ H1(Ω),

(3.34)

eM − eMi − PMji (eMj ) = (Pji − PMji )(uj) on Γi, i 6= j. (3.35)
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Taking v = eM gives

D(eM , eM ) = T M ((eM1 , eM2 ), eM ) + (T − T M )((u1, u2), eM ). (3.36)

For estimating the first term in the right-hand-side, we use a computation
similar to that used for (3.28). The only difference comes from (3.35) having a
non-zero right-hand-side, however since TMij (eMi ) annihilates the range of (Pij−
PMij ), i 6= j, the following required estimate can be obtained,

T M ((eM1 , eM2 ), eM )) ≤
N−1∑
n=0

4µn=(eiµnL)<(eM1,nē
M
2,n). (3.37)

For the second term of the right-hand-side in (3.36), noting that u1 = uright

on Γ1, u2 = uleft on Γ2 and u = uex in Ω, we use (3.15) and a trace inequality
to show that

|(T − T M )((u1, u2), eM )| ≤ Ce−µ̃M+1δ‖u‖H1(Ω)‖eM‖H1(Ω). (3.38)

The desired estimate (3.33) follows by taking the real part of (3.36) and com-
bining (3.37)-(3.38).
Step II: In Step II, we prove that for M > N

‖eM‖L2(Ω) ≤ Ce−µ̃M+1δ(‖u‖H1(Ω) + ‖eM‖H1(Ω)). (3.39)

To do this, we will consider the adjoint problem with a source function eM . Let
(w,w1, w2) ∈ W be the solution to the adjoint problem (2.28) with f = eM ,
which also can be written as

D(v, w)− T ∗(v, (w1, w2)) = (v, eM )Ω for all v ∈ H1(Ω), (3.40)

w − wi − P ∗ij(wj) = 0 on Γi, i 6= j. (3.41)

Lemma 2.12 gives the stability result

‖(w,w1, w2)‖W ≤ C‖eM‖L2(Ω). (3.42)

For v = eM in (3.40), we have

‖eM‖2L2(Ω) = D(eM , w)− T ∗(eM , (w1, w2)). (3.43)

On the other hand, by taking v = w in (3.34) we are led to

D(eM , w)− T M ((eM1 , eM2 ), w) = (T − T M )((u1, u2), w). (3.44)

By using Lemma 3.4 with (3.35) and the fact that T ∗Mij (wj) annihilates the

range of Pij − PMij , we can show that

T M ((eM1 , eM2 ), w) = T ∗M (eM , (w1, w2))

= T ∗(eM , (w1, w2))− (T ∗ − T ∗M )(eM , (w1, w2)).
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It then follows from (3.43) and (3.44) that

‖eM‖2L2(Ω) = (T − T M )((u1, u2), w)− (T ∗ − T ∗M )(eM , (w1, w2)). (3.45)

As done for the estimate (3.38), we use (3.15), (3.17) and the stability (3.42) to
estimate the terms in the right-hand-side,

|(T − T M )((u1, u2), w)| ≤ Ce−µ̃M+1δ‖u‖H1(Ω)‖eM‖L2(Ω),

|(T ∗ − T ∗M )(eM , (w1, w2))| ≤ Ce−µ̃M+1δ‖eM‖H1(Ω)‖eM‖L2(Ω).
(3.46)

Combining (3.45) and (3.46) completes the L2 estimate (3.39) for eM .
Step III: In Step III, we prove that for M > N

N−1∑
n=0

4µn=(eiµnL)<(eM1,nē
M
2,n) ≤ Ce−µ̃M+1δ(‖u‖H1(Ω) + ‖eM‖H1(Ω))‖eM‖H1(Ω).

(3.47)
Denoting by πj the projection onto the subspace spanned by {Yn}N−1

n=0 of
L2(Γj), let gj = πj(∂e

M/∂νΩj ) ∈ L2(Γj). As done in Step II, we consider the

solution (wj , wj1, w
j
2) in W to the adjoint problem (2.29) with g = gj . The same

arguments as those used in Step II lead to

|U | := |(eM |Γ1 , g1)Γ1 + (eM |Γ2 , g2)Γ2 |
≤ Ce−µ̃M+1δ(‖u‖H1(Ω) + ‖eM‖H1(Ω))(‖g1‖L2(Γ1) + ‖g2‖L2(Γ2)).

(3.48)

Here U is, in fact, the term we want to estimate in (3.47), in that,

U = −iµn

N−1∑
n=0

[
(eM1,n + eiµnLeM2,n)(ēM1,n − e−iµnLēM2,n)

+ (eM2,n + eiµnLeM1,n)(ēM2,n − e−iµnLēM1,n)

]
=

N−1∑
n=0

4µn=(eiµnL)<(eM1,nē
M
2,n).

Therefore using

‖gj‖L2(Γj) ≤ C‖
∂eM

∂νΩj

‖H−1/2(Γj) ≤ C‖e
M‖H1(Ω),

we can obtain from (3.48) the desired estimate

N−1∑
n=0

4µn=(eiµnL)<(eM1,nē
M
2,n) ≤ Ce−µ̃M+1δ(‖u‖H1(Ω) + ‖eM‖H1(Ω))‖eM‖H1(Ω).

Step IV: We prove that there exists a constant Mconv > Muniq such that for
M > Mconv

‖eM‖H1(Ω) ≤ Ce−µ̃M+1δ‖u‖H1(Ω). (3.49)
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To prove it, we have only to combine all estimates (3.33), (3.39) and (3.47)
obtained in the previous steps. Applying (3.39) and (3.47) to (3.33) we see that

‖eM‖2H1(Ω) − C1(k2 + 1)e−2µ̃M+1δ(‖u‖2H1(Ω) + ‖eM‖2H1(Ω))

≤ C2e
−µ̃M+1δ‖u‖H1(Ω)‖eM‖H1(Ω) + C3e

−µ̃M+1δ(‖u‖H1(Ω) + ‖eM‖H1(Ω))‖eM‖H1(Ω),

from which it follows that(
1−β(C2 + C3)

2
−
(
C1(k2 + 1)e−2µ̃M+1δ + C3e

−µ̃M+1δ
))
‖eM‖2H1(Ω)

≤
(
C1(k2 + 1) +

(C2 + C3)

2β

)
e−2µ̃M+1δ‖u‖2H1(Ω)

with the help of the Cauchy-Schwarz inequality with any constant β > 0. Now,
by taking a large Mconv and a small β such that(
C1(k2 + 1)e−2µ̃M+1δ + C3e

−µ̃M+1δ
)
<

1

4
for M > Mconv and

β(C2 + C3)

2
<

1

4
,

we can obtain the estimate (3.49) for eM in Ω.
Step V: We prove that the errors eMj of auxiliary functions satisfy

‖eMj ‖H1/2(Γj) ≤ C
e−µ̃M+1δ

µmin
‖u‖H1(Ω) (3.50)

for M > Mconv.
We consider the decomposition of eMj = eMj,≤M + eMj,>M . Due to (3.35), the

high frequency component eMj,>M satisfies

eMj,>M = eM |Γj ,>M − (Pij − PMij )(ui) on Γj .

By using a trace inequality, (3.16) and (3.49) it can be shown that

‖eMj,>M‖H1/2(Γj) ≤ C‖e
M‖H1(Ω) + Ce−µ̃M+1δ‖u‖H1(Ω) ≤ Ce−µ̃M+1δ‖u‖H1(Ω).

(3.51)
On the other hand, since the low frequency component eMj,≤M satisfies

eM |Γj ,≤M = eMj,≤M + Pij(e
M
i,≤M ) on Γj ,

∂eM

∂νΩj

|Γj ,≤M = Tjj(e
M
j,≤M ) + Tij(e

M
i,≤M ) on Γj ,

that is eM1,≤M and eM2,≤M are the Dirichlet traces on Γ1 and Γ2 of the right-going

and left-going components of eM≤M in Ω12, respectively, the stability analysis
in Lemma 2.7 based on the continuity of layer potentials for the non-cutoff
component and Lemma 2.9 for the cutoff component still holds true and hence
we are led to

‖eMj,≤M‖H1/2(Γj) ≤
C

µmin
‖eM≤M‖H1(Ωδj )

≤ C

µmin
‖eM‖H1(Ω) ≤ C

e−µ̃M+1δ

µmin
‖u‖H1(Ω)

(3.52)
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Finally, (3.51) and (3.52) yield that

‖eMj ‖2H1/2(Γj)
= ‖eMj,≤M‖2H1/2(Γj)

+ ‖eMj,>M‖2H1/2(Γj)
≤ C e

−2µ̃M+1δ

µ2
min

‖u‖2H1(Ω),

which completes the proof. �

Finally we can establish the stability of approximate solutions to the problem
(3.1).

Theorem 3.11. For any M > Mconv the problem (3.1) has a unique solution
(uM , uM1 , uM2 ) in W satisfying

‖(uM , uM1 , uM2 )‖W ≤ C‖f‖H1(Ω).

proof. By Lemma 3.9 and Theorem 3.10, there exists a unique solution (uM , uM1 , uM2 )
in W to the problem (3.1) satisfying the error estimate (3.32). The stability
estimate in Theorem 2.10 for the exact solution (u, u1, u2) ∈ W and a triangle
inequality give

‖(uM , uM1 , uM2 )‖W ≤ ‖(eM , eM1 , eM2 )‖W + ‖(u, u1, u2)‖W ≤ C‖f‖L2(Ω),

which completes the proof. �

4. Numerical experiments

For numerical tests for convergence of approximate solutions, we consider
the problem (with H a positive constant)

−∆u− k2u = 0 in Ω̃ = (−H,H)× (0, 1),

∂u

∂νΩ̃

= 0 on (−H,H)× {0, 1}

with Dirichlet conditions imposed on {±H}× (0, 1) such that the exact solution
is given by, if k 6= nπ for n = 0, 1, . . . ,

uex(x1, x2) =

49∑
n=0

(eiµn(x1+H) + 3e−iµn(x2−H))Yn(x2),

and if k = Nπ for some N < 50

uex(x1, x2) = (2x1 + 1)YN (x2) +

49∑
n=0,n6=N

(eiµn(x1+H) + 3e−iµn(x2−H))Yn(x2).

We conduct numerical experiments for

(1) Relative L2-errors in Ω versus M ,
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(d) k = 20, δ = 0.25

Figure 2: Relative L2-Errors vs. M
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(2) Relative L2-errors in Ω versus δ,

(3) Relative L2-errors in Ω versus L,

(4) Relative L2-errors in Ω versus µmin

by applying the finite element method to the problem with the help of the
finite element library deal.II [4]. As mentioned in Remark 3.1, for numerical

computations we employ the variational problem associated with ÃM (·, ·),

ÃM ((u, u1, u2), (v, v1, v2)) = aM ((u, u1, u2), v) + b̃M ((u, u1, u2), (v1, v2))

for (u, u1, u2) and (v, v1, v2) ∈W , with γ = −1 and the boundary terms b̃M (·, ·)
with respect to the L2-inner product rather than AMγ (·, ·) including −γbM (·, ·)
with respect to the H1/2-inner product.

Test (1): relative L2-errors in Ω vs. M . In this test we set k = 20 for the
case that cutoff modes are not involved and k = 6π for the case that a cutoff
mode exists. For the domain Ω̃ with H = 2.6, we take two cavities

Ω1 = (−H,−H + δ)× (0, 1) and Ω2 = (H − δ,H)× (0, 1) (4.1)

with δ = 0.125, 0.25, 0.5 and 1. The distance L between two cavities is given
by L = 2H − 2δ. For each test case, the parameter M for the truncated MDtN
condition increases from 6 to 12. Figure 2 (a) and (b) show the results for
different δ mentioned above when Ω1 and Ω2 are triangulated with quadrilateral
meshes of h = 1/400. For the case of δ = 0.125 we can observe that the
errors decay exponentially at the rate of e−µ̃M+1δ (represented by black dash-dot
curves) as functions of M , in particular for 6 ≤M ≤ 9 until reflection errors are
dominant compared with finite element errors. We also conduct experiments
for fixed δ = 0.25 but with different mesh sizes h = 1/200, 1/400, 1/800 and
1/1600 to see the behaviors of approximation errors in terms of finite element
mesh sizes. The results given in Figure 2 (c) and (d) illustrate that as the mesh
size is smaller the error plots are closer to the theoretical decay rates (black
dash-dot curves). For δ = 0.5 and 1, the reflection errors are small enough even
at M = 6 compared with finite element errors so that using more Fourier terms
in the MDtN condition does not improve the accuracy.

Test (2): Relative L2-errors in Ω vs. δ. We take the same domain Ω̃ as that
used for Test (1) with H = 2.6. For two cavities Ω1 and Ω2 defined by (4.1)
with an increasing sequence δ from 0.1 to 0.32 with increment 0.02. Here we
consider δ to be the distance from the wave sources to the artificial boundaries
Γj . We decompose them into quadrilaterals with h = 1/800. The distance L
between two cavities is given by L = 2H − 2δ as well. In this test, for fixed
M = 10, 15, 20 and 25 we compute relative L2-errors as a function of δ. The
resulting plots for k = 20 are given in Figure 3. It can be seen that the errors
obtained by using the truncated MDtN condition with M = 10 decrease expo-
nentially approximately at the rate of e−µ̃M+1δ as δ increases up to 0.2 but they
grow after that. Similarly, errors in other cases decrease until some points and
then they increase. The reason that the errors grow after δ passes a threshold
can be explained in terms of pollution errors of finite element approximations
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Figure 3: L2-Errors vs. δ for k = 20, h = 1/800

for the Helmholtz equation studied in [12, 13, 14]. When the domain size in-
creases along the x1-axis with both wavenumber k (which is equal to the largest
axial frequency µ0) and mesh size h fixed, after rescaling the computational
domain to the unit one we can have kshs = constant with increasing rescaled
wavenumber ks and decreasing rescaled mesh size hs. According to the theory
in [12, 13, 14], the condition kshs = constant does not give a mesh resolution
fine enough to get rid of pollution errors. In fact, the pollution term defined
in [12] is proportional to hsk

2
s and hence once the reflection error determined

by the factor e−µ̃M+1δ becomes ignorable compared with finite element errors,
overall approximation errors grow with increasing domain size. Therefore it is
preferable to set computational domains Ω containing the region of interest as
tight as possible and control M to obtain required approximate solutions by
choosing e−µ̃M+1δ to be less than a reasonable reflection error. The minimal M
in order that e−µ̃M+1δ < ε for δ = 0.1 is given in Table 1.

k
ε

10−1 10−2 10−3 10−4

6π 8 14 21 28
20 8 14 21 29

Table 1: The minimal M so that e−µ̃M+1δ < ε for δ = 0.1

Test (3): Relative L2-errors in Ω vs. L. The purpose of the third test is
to show that the proposed technique is independent of the aspect ratio of the
removed waveguide Ω12, that is, keeping the height fixed (unit length in this
example) it does not depend on the distance L between two artificial boundaries.
To this end, let δ = 0.2 be fixed and set H = L/2 + δ for increasing L from 4 to
42, so that two cavities Ω1 = (−L/2 − δ,−L/2) × (0, 1) and Ω2 = (L/2, L/2 +
δ)× (0, 1) are L apart from each other. We take k = 20 and M = 14 for which
the reflection error is reduced by the factor e−µ̃M+1δ < 1.9670 × 10−4. The
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Figure 4: Relative L2-errors vs. L with δ = 0.2, M = 14

errors of finite element approximations for h = 1/400 are reported in Figure 4.
We can observe that the errors (solid blue line) of most cases except at several
peaks are below 3 × 10−3. In fact, these peaks are related with eigenvalues of
the operator L = −∆ in Ω̃ with the mixed boundary conditions on ∂Ω̃. To
present the relation, Figure 4 includes the graph of a constant multiple of the
resolvent norm given by 1/d(k2, σ(L)) with the dash-dot red line, where σ(L)
is the spectrum of the operator L and d(k2, σ(L)) is the distance from k2 to
σ(L). The shapes of these two plots have a quite good agreement qualitatively.
Thus, the performance of the method does not depend on how far away two
computational domains are placed if k2 is away from the spectrum of L.

Test (4): Relative L2-errors in Ω vs. µmin. Two cavities Ω1 and Ω2 in this
test are defined as (4.1) with H = 2.6, δ = 0.2 and L = 2(H − δ) = 4.8. We
take the wavenumbers k = k0 ± ε for k0 = 4π or 7π with small ε from 10−3 to
10−8 for which µmin = |k2 − k2

0|1/2 = |(k0 ± ε)2 − k2
0|1/2. We use M = 20 so

that e−µM+1δ ≈ 2.3688× 10−6 for k = 4π± ε and 3.9568× 10−6 for k = 7π± ε.
The resulting error plots for h = 1/400 are presented in Figure 5, which shows
that the performance of the method is independent of near-cutoff modes. As
a special case we also conduct a test to show that the decomposition of the
right-going and left-going components of the solution and the error is stable
with respect to the weighted norm involving µmin as in Lemma 2.7 and (3.50).
To do this, we choose k = 7π + ε and the exact solution

uex(x1, x2) = (eiµ7(x1+L/2) − e−iµ7(x1+L/2))Y7(x2) = 2i sin(µ7(x1 + L/2))Y7(x2)

with λ7 = 7π and µmin =
√
k2 − λ2

7. Here −L/2 is the x1-coordinate of the
artificial boundary Γ1. In this case, we have

‖uright‖H1/2(Γ1) = ‖uleft‖H1/2(Γ2) = (1 + (7π)2)1/4,

whereas
‖uex‖H1(Ω) = O(µmin) as ε→ 0+.
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Figure 5: Relative L2-errors vs. µmin for ε = 10−3, 10−4, . . . , 10−8

We compute the L2-norms of finite element solutions instead of the full Sobolev
norms as it is challenging to compute the fractional Sobolev norms. As shown
in Table 2, the right-going and left-going components are bounded with respect
to the weighted norm involving µmin.

ε 10−3 10−4 10−5 10−6 10−7 10−8

µmin(‖uright‖L2(Γ1) + ‖uleft‖L2(Γ2))

‖uex‖L2(Ω)
1.0094 0.9744 0.9711 0.9707 0.9707 0.9707

µmin(‖eM1 ‖L2(Γ1) + ‖eM2 ‖L2(Γ2))

‖eM‖L2(Ω)
1.3117 1.2639 1.2592 1.2587 1.2587 1.2587

‖eM‖L2(Ω)

‖uex‖L2(Ω)
(×10−3) 1.8904 1.8806 1.8796 1.8795 1.8795 1.8795

Table 2: Stable decomposition of the right-going and left-going components

Lastly, as an application of our method, we can consider a wave propaga-
tion problem associated with ring resonators. The domain consists of infinite
straight waveguide R × (0, 1) and three ring resonators R1, R2, R3 centered at
(0, 4), (16, 4) and (32, 4), as shown Figure 6 (a) and (c). The outer radius and
the inner radius of the ring resonators are 3.5 and 2.5, respectively. For non-
reflecting boundary conditions, the perfectly matched layer (PML) is imposed
in the regions (−4,−3)× (0, 1) and (35, 36)× (0, 1). We compute solutions for
k = 1, 2 when an incoming wave defined by

uin(x1, x2) = eiµ0(x1+3)Y0(x2)

is propagating through the cross-section at x1 = −3. We confine each resonator
in a small computational domain

Ω1 = R1∪ (−4, 3)× (0, 1), Ω2 = R2∪ (13, 19)× (0, 1), Ω3 = R3∪ (29, 36)× (0, 1)
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and impose the MDtN condition with M = 4 on artificial boundaries. Here Ω1

and Ω2 include PML in the left side and in the right side, respectively. The
finite element method with h = 10−2 produces the solutions shown in Figure 6
(b) and (d). The solutions in Figure 6 (a) and (c) are obtained by solving them
in a single computational domain. We can see that two solutions ((a) and (b)),
((c) and (d)) obtained by two different methods coincide with each other .
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