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Abstract

In this paper we introduce a hybrid absorbing boundary condition (HABC) by
combining perfectly matched layer(PML) and complete radiation boundary con-
dition(CRBC) for solving a one-dimensional diffraction grating problem. The
new boundary condition is devised in such a way that it can enjoy relative advan-
tages from both methods. The well-posedness of the problem with HABC and
the convergence of approximate solutions will be analyzed. Numerical examples
to illustrate the efficiency of HABC are also presented.

Key words: Absorbing boundary condition, perfectly matched layer, complete
radiation boundary condition, Helmholtz equation, diffraction grating

1. Introduction

In this paper, we will develop a new absorbing boundary condition for time-
harmonic wave scattering problems by combining two well-known absorbing
boundary conditions, perfectly matched layers(PML) and complete radiation
boundary conditions(CRBC). In particular, we consider a model problem gov-
erned by the Helmholtz equation, of which solutions propagate in one direction,
for example, model problems describing wave phenomena arising in guided struc-
tures or periodic diffraction gratings. Since solutions to these kinds of model
problems can be represented as a superposition of finite number of propagating
modes and infinite number of evanescent modes, promising absorbing boundary
conditions are required to handle both types of modes efficiently.

The PML is an absorbing boundary layer that wave fields propagating into
decay exponentially without spurious reflections. Even though the PML needs
to be truncated in actual involvement in numerical computations, it produces
only exponentially small reflection depending on how strong PML strength and
how large PML width are used. Due to its easy implementation and strong
effectiveness it has been actively engaged in numerical computations related
with wave propagation ever since it was proposed by Bérenger in [4, 5] to solve
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electromagnetic wave propagation problems. On the other hand, CRBC was
introduced recently for high-order absorbing boundary conditions in [8, 10].
It can be interpreted as a rational approximation to the square root function
involved in the radiation condition and parameters of CRBC can be chosen in
an optimal way so that it reduces reflection errors exponentially with respect to
the number of parameters and uniformly in the spectral range of interest.

Although both PML and CRBC have been utilized successfully as efficient
absorbing boundary conditions, one has the superiority over the other in dealing
with some types of modes. In case that solutions contain grazing modes such
as propagating modes of large wavelength or slowly decaying evanescent modes
generated close to artificial boundaries, it is observed that PML may require
inefficiently large computational resources to obtain approximations of reason-
able accuracy, see e.g., [9]. In contrast, CRBC can not only act as an exact
radiation condition for such modes by taking appropriate parameters but also
reduce the reflection errors of modes in a certain spectral range uniformly and
optimally. However since the Dirichlet-to-Neumann(DtN) operator for CRBC
does not converge to the DtN operator for the exact radiation condition in a
Sobolev norm, its performance may be deteriorated by evanescent modes of high
axial frequency unless a gap δ between wave sources and the artificial boundary
is sufficiently large for the evanescent modes to be ignorable on the artificial
boundary. PML can get rid of this concern by accelerating the decay rate of the
evanescent modes via PML coordinate stretchings. This observation motivates
us to design a hybrid absorbing boundary condition(HABC) taking advantage
of two methods, i.e, the CRBC component of the absorbing boundary condition
takes care of a small number of low frequency modes and the PML counterpart
takes the responsibility of diminishing the reflection errors of the rest of infinite
number of modes.

Once the hybrid absorbing boundary condition is defined, we will discuss
the well-posedness of the model problem supplemented with HABC and the
convergence of approximate solutions. It is also worth noting that a recent
effort to improve the performance of PML has been made by cooperating with
a truncated DtN boundary condition in [14]. However, typically the truncated
DtN boundary condition destroys the sparsity of system matrices resulting from
discretization techniques as opposed to CRBC preserving the sparsity.

The rest of the paper is organized as follows. In Section 2 we introduce a
one-dimensional diffraction grating problem as the model problem. In section 3,
the hybrid absorbing boundary condition as a combination of CRBC and PML is
defined to solve the diffraction grating problem in a finite computational domain.
Section 4 is devoted to establishing the well-posedness of the Helmholtz equation
with HABC. A discussion on how CRBC parameters are chosen to minimize
the reflection error for given number of grid points along the direction of wave
propagation is given in Section 5. Finally, numerical experiments illustrating
the performance of HABC will be presented in Section 6.
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Figure 1: Geometric configuration of the one-dimensional diffraction grating

2. Model problem: one-dimensional diffraction grating

As a model problem, we consider one-dimensional periodic diffraction grat-
ing problem in R2. A diffraction grating is an optical device that decomposes
polychromatic light into light components with different wavelength. For the
transverse magnetic polarization of electromagnetic fields in R3, the longitudinal
component (z-component) u of electric fields solves the Helmholtz equation

∆u+ k2u = 0, (2.1)

where k = ωc−1√εµ with angular frequency ω, speed of light in air c, mag-
netic permeability µ, and electric permittivity ε(x, y) depending on the spatial
variable (x, y) ∈ R2. Assume that a periodic grating with period L > 0 along
the x-axis is bounded above by a piecewise smooth periodic curve S1, whose y
component is in 0 < y < H and below by the curve S2 of y = 0. The periodic
grating structure is characterized by an inhomogeneous wavenumber k ∈ L∞.
The medium above S1 is assumed to be homogeneous with constant wavenum-
ber k = k1. For instance, the medium above S1 is filled up by air and so k1

is real and positive. The one below of S2 is, in general, occupied by absorbing
materials, which corresponds to complex wavenumber with positive real and
imaginary parts, however in order to focus on the performance of the absorb-
ing boundary condition we impose the perfectly conducting boundary condition
u = 0 on S2.

Now, the incident wave is given by a plane wave uin(x, y) = ei(αx−βy) prop-
agating from the top with the incident angle θ ∈ (−π/2, π/2), α = k1 sin(θ) and
β = k1 cos(θ), see Figure 1. The periodic diffraction grating can produce an
α-quasiperiodic scattered field usc satisfying

usc(x+ L, y) = eiαLusc(x, y)

and a radiation condition for y → ∞ to be defined below. Due to the α-
quasiperiodicity, the problem for α-quasiperiodic solutions can be restricted to
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the semi-infinite strip region

Ω∞ = {(x, y) ∈ R2 : 0 < x < L, 0 < y <∞}.

For the radiation condition, we will write α-quasiperiodic solutions to the Helmholtz
equation in a series form with the help of a complete set of orthonormal eigen-
functions in L2(0, L) of the α-quasiperiodic eigenvalue problem in L2

loc(R)

−φ′′(x) = λ2φ(x),

φ(x+ L) = eiαLφ(x).

Here eigenfunctions are given by φn(x) = 1√
L
eiλnx for the eigenvalues λ2

n with

λn = α + 2nπ
L , n ∈ Z. Under the time-harmonic convention e−iωt of the time

variable t, the scattered field usc propagating toward the positive infinity along
the y-axis is the one represented by

usc(x, y) =
∑
n∈Z

Ane
iµn(y−H)φn(x) for y > H (2.2)

for some constants An, where µn =
√
k2

1 − λ2
n with the negative real axis branch

cut so that µn is real and positive for k2
1 − λ2

n > 0 and purely imaginary with
positive imaginary part µ̃n (that is, µn = iµ̃n) for k2

1 − λ2
n < 0. In some cases,

µn is possibly zero, for which the mode is called the cutoff mode. For a complete
analysis, we assign the index N to the cutoff mode, i.e., µN = 0.

Thus, denoting the domain of interest by Ω = (0, L)×(0, H) and its boundary
for the radiation condition by Γ = {(x, y) : 0 < x < L, y = H}, the radiation
condition can be interpreted on the boundary Γ as

∂yu
sc = T (usc) (2.3)

in terms of the DtN operator T : H
1/2
α (Γ)→ H

−1/2
α (Γ) defined by

T (v) =
∑
n∈Z

iµnvnφn (2.4)

for v =
∑
n∈Z vnφn, where Hs

α(Γ) for s ∈ R is a Sobolev space consisting of
functions v satisfying

‖v‖2Hsα(Γ) =
∑
n∈Z

(1 + λ2
n)s|vn| <∞.

Here H
1/2
α (Γ) can be seen as a trace space of H1

α(Ω), the subspace of functions
with α-quasiperiodicity on the lateral boundaries in H1(Ω), and it holds that

‖v|Γ‖H1/2
α (Γ)

≤ C‖v‖H1(Ω)

for v ∈ H1
α(Ω) (see e.g., [11] for a similar analysis).
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Now, the incident wave uin can be imposed on Γ as a source term for the
boundary condition of the total field uto = uin + usc, i.e., noting that the
incident wave uin(x, y) =

√
Le−iβyφ0(x) is composed of only one mode of n = 0

and satisfies
∂yu

in = T (uin)− 2iβuin on Γ, (2.5)

(2.3) and (2.5) give the boundary condition for the total field uto

∂yu
to = T (uto)− 2iβuin on Γ.

Therefore, the diffraction grating problem to find the total field uto for given
uin can be reduced to the problem posed on the bounded domain Ω, that can
be written as finding uto ∈ H1

α(Ω) satisfying

∆uto + k2uto = 0 in Ω,

uto = 0 on Γ2, uto(L, ·) = eiαLuto(0, ·),
∂yu

to = T (uto)− 2iβuin on Γ.

(2.6)

Here Γ2 = (0, L) × {0}. Denoting the L2-inner product in a domain D by

(·, ·)D and the duality pairing between H
−1/2
α (Γ) and H

1/2
α (Γ) with pivot space

H0
α(Γ) = L2(Γ) by 〈·, ·〉Γ, and letting H1

α,0(Ω) be the subspace of functions
vanishing on Γ2 in H1

α(Ω), we reformulate (2.6) to a variational problem to find
uto ∈ H1

α,0(Ω) such that

aΩ(uto, v)− 〈T (uto), v〉Γ = 〈g, v〉Γ for v ∈ H1
α,0(Ω), (2.7)

where g = −2iβuin on Γ and

aΩ(u, v) = (∇u,∇v)Ω − k2(u, v)Ω.

It is shown by the compact argument in [3] (see also [6]) that except for discrete
sets of eigenvalues ω the problem (2.7) is well-posed and there exists a positive
constant C such that

‖w‖H1(Ω) ≤ C sup
0 6=ψ∈H1

α,0(Ω)

|aΩ(w,ψ)− 〈T (w), ψ〉Γ|
‖ψ‖H1(Ω)

. (2.8)

for all w ∈ H1
α,0(Ω). Thus, from now on we assume that ω is not an eigenvalue of

the diffraction grating problem. For such ω, the main goal is to develop an ab-
sorbing boundary condition that can replace T and have the relative advantage
from PML and CRBC.

3. Hybrid absorbing boundary condition

In this section we introduce the hybrid absorbing boundary condition based
on PML and CRBC. We first review CRBC from [8, 10].

5



3.1. Complete radiation boundary condition

The CRBC is a high order absorbing boundary condition, which can be
interpreted as a rational approximation to the square root function of the sym-
bol

√
k2 − ∂2

x of the radiation condition, see [10]. Recall that CRBC of order
(np, ne) for non-negative integers np and ne is defined in terms of auxiliary vari-
ables uj for j = 0, 1, . . . , P with P = np + ne satisfying the Helmholtz equation
with the boundary condition of α-quasiperiodicity on the lateral boundaries and
the recurrence relations

u0 = u,

(∂y + aj)u
j = (−∂y + ãj)u

j+1 for j = 0, 1, . . . , P − 1
(3.9)

with the terminal condition

∂yu
P = 0 on Γ, (3.10)

where the parameters aj and ãj satisfy

aj = −iσj , ãj = −iσ̃j for j = 0, . . . , np − 1,

anp+j , ãnp+j > 0 for j = 0, . . . , ne − 1
(3.11)

with 0 < σj , σ̃j ≤ k1 such that |aj | ≤ |ãj |.
Here 2np purely imaginary parameters are used for damping the reflection

error from propagating modes and the 2ne real parameters are responsible for
reducing the reflection error from slowly decaying evanescent modes. For exam-
ple, since uj solves the Helmholtz equation with the α-quasiperiodic boundary
condition on the lateral boundaries, uj can be written as the series form near Γ

uj(x, y) = (AjN+BjN (y−H))φN (x)+
∑

n∈Z,n6=N
(Ajne

iµn(y−H)+Bjne
−iµn(y−H))φn(x)

(3.12)
for some constants Ajn and Bjn. If one parameter, for instance ã`, is chosen such
that ã` = −iµn for some n 6= N , then one can show that B`n = 0 from (3.9)
with j = `, which results in Bjn = 0 for j = 0, 1, . . . , ` from (3.9) with j < ` and
so the n-th mode of u = u0 satisfies the exact radiation condition. In actual
practice, the parameters are chosen so that the reflection errors of modes in a
certain spectral range are uniformly minimized.

Minimizing the reflection errors in a spectral range is related with the min-
imization of the reflection coefficients defined as the ratio of the amplitude of
the reflected component to the that of the outgoing component,

Zn :=


B0
n

A0
n

=

P∏
j=0

(aj + iµn)(ãj + iµn)

(aj − iµn)(ãj − iµn)
for n 6= N

0 for n = N.

(3.13)

This formula can be easily obtained by applying (3.12) to the recurrence relation
(3.9). Indeed, for n 6= N it can be seen that

Ajn = Q0,j−1
n A0

n, Bjn = Rj,P−1
n BPn , (3.14)
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where

Q`,mn =


m∏
j=`

aj + iµn
ãj − iµn

for ` ≤ m,

1 for ` > m,

R`,mn =


m∏
j=`

ãj + iµn
aj − iµn

for ` ≤ m,

1 for ` > m.
(3.15)

Since the terminal condition (3.10) for the n-th mode leads to APn = BPn , (3.13)
is obtained. In case of n = N , the computation similar to the above shows that

ajB
j
N = ãjB

j+1
N and (1−ajH)BjN+ajA

j
N = −(1+ãjH)Bj+1

N +ãjA
j+1
N (3.16)

for j = 0, . . . , P−1. The terminal condition (3.10) for the N -th mode shows that
BPN = 0, which implies that B0

N = 0, that is, CRBC serves as the exact radiation
condition for the cutoff mode. The optimal selection of the parameters that can
minimize the reflection coefficients (3.13) will be discussed in Subsection 3.4.

The recurrence relations (3.9) can be rephrased to an equivalent form in-
volving only the tangential derivatives, which is more suitable for finite element
implementation,

− ∂yue0 = −L∂2
xU + (−k2

1L + M)U − ∂yuPeP on Γ, (3.17)

where U = (u0, u1, . . . , uP )> and ej is the j-th standard basis vector of CP+1

for j = 0, 1, . . . , P . In addition, L and M are (P + 1) × (P + 1) symmetric
tridiagonal matrices such that for 0 ≤ j ≤ P

Lj,j−1 =
1

aj−1 + ãj−1
, Lj,j =

1

aj−1 + ãj−1
+

1

aj + ãj
, Lj,j+1 =

1

aj + ãj

Mj,j−1 =
−a2

j−1

aj−1 + ãj−1
Mj,j =

aj−1ãj−1

aj−1 + ãj−1
+

aj ãj
aj + ãj

Mj,j+1 =
−ã2

j

aj + ãj
.

Here the terms with indices outside the index range of aj , ãj (0 ≤ j ≤ P − 1)
are ignored by convention. This can be achieved by multiplying (3.9) by the
differential operator ∂y and by eliminating ∂2

y using the Helmholtz equation of

uj . See [8] in more detail. Of course, the Neumann terminal condition (3.10)
removes the last term in (3.17) however we keep this term in (3.17) for the
derivation of the hybrid absorbing boundary condition replacing the Neumann
terminal condition with PML.

3.2. Hybrid absorbing boundary condition

The new absorbing boundary condition proposed in this paper is CRBC
terminated with PML, that is, PML is applied to the last auxiliary variable
uP . More precisely, let ΩPML = (0, L) × (H,H + M) be the damping zone
with PML width M > 0 and ΓPML = (0, L) × {H + M} being the boundary
on which PML is truncated. For a linear PML coordinate stretching function
ỹ(y) = σ0(1 + i)(y −H) +H for y ≥ H with positive constant σ0 we introduce
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the PML solution ũP , associated with uP , solving

σ∂2
xũ

P + ∂y
1

σ
∂yũ

P + σk2
1ũ
P = 0 in ΩPML, (3.18)

ũP = uP and
1

σ
∂yũ

P = ∂yu
P on Γ, (3.19)

∂yũ
P = 0 on ΓPML (3.20)

with the α-quasiperiodic condition on the lateral boundaries. Here σ = σ0(1 +
i) = ∂ỹ/∂y. A homogeneous Dirichlet condition can be an alternative to (3.20),
however, the Neumann condition (3.20) allows HABC to give a better perfor-
mance for cutoff modes or grazing modes.

We now analyze HABC in terms of a DtN operator. Since the auxiliary
variables uj of HABC satisfy the same recurrence relations as those of CRBC,
the coefficients Ajn and Bjn of uj still satisfy (3.14) and (3.16). Due to the
continuity conditions (3.19) of uP , ũP and their normal fluxes on Γ the solution
ũP to the PML equation (3.18) can be written as

ũP (x, y) = (APN+σBPN (y−H))φN (x)+
∑

n∈Z,n6=N

[
APn e

iµnσ(y−H)+BPn e
−iµnσ(y−H)

]
φn(x)

(3.21)
for H < y < H + M with the same coefficients APn and BPn of uP . Finally, it
can be shown that the boundary condition (3.20) for (3.21) gives

BPN = 0 and BPn = e2iµnσMAPn , (3.22)

and hence combining (3.14) and (3.22) yields the reflection coefficient of HABC
for the n-th mode

B0
n

A0
n

:= Rn = Zne2iµnσM . (3.23)

Here we note that Zn is the reflection coefficient resulting from CRBC and
the exponential term e2iµnσM is the typical one for PML depending on PML
strength σ and width M . It is also noticed that HABC is the exact radiation
condition for the cutoff mode and the coefficients for the cutoff modes can be
given as

AjN =

j−1∏
j=0

aj
ãj

A0
N = Q0,j−1

N A0
N for j = 1, . . . , P. (3.24)

By using (3.14), (3.22) and (3.24) in (3.12), the solution and the auxiliary
variables uj for j = 0, . . . , P can be written as

uj(x, y) = Q0,j−1
N A0

NφN (x)

+
∑

n∈Z,n6=N

[
Q0,j−1
n eiµn(y−H) +Rj,P−1

n Q0,P−1
n e2iµnσMe−iµn(y−H)

]
A0
nφn(x).

(3.25)
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To define the DtN operator associated with HABC, for given a Dirichlet
data u = u0 =

∑
n∈Z u

0
nφn on Γ, we seek for the Neumann value of u (3.25)

with j = 0 on Γ, which reads

∂yu =
∑
n∈Z

iµn(A0
n −B0

n) =
∑
n∈Z

iµn
1−Rn
1 +Rn

u0
nφn.

Finally, the DtN operator for HABC is defined by the operator THABC : H
1/2
α (Γ)→

H
−1/2
α (Γ) given by

THABC(v) =
∑
n∈Z

iµn
1−Rn
1 +Rn

vnφn (3.26)

for v =
∑
n∈Z vnφn ∈ H

1/2
α (Γ).

In light of (3.23), we can minimize the reflection coefficients uniformly in a
certain spectral range by minimizing the maximal value of |Zn| as we will see
in the next subsection. Also we can expect the exact radiation condition for
the modes of small |µn| troublesome to PML by choosing a parameter to be
−iµn of the corresponding small axial frequency. Furthermore, even if |Zn| →
1 as |n| → ∞ (which is a drawback of CRBC for evanescent modes of high
axial frequency since CRBC can not diminish the reflection coefficients of such
modes), HABC still can play a role of an effective absorbing boundary condition
for such large n owing to PML reducing the reflection coefficients exponentially
at a rate of e−2µ̃nσ0M . Therefore, we can design HABC such that CRBC works
for modes of relatively small axial frequencies (all propagating modes and slowly
decaying evanescent modes) and PML takes care of the rest of modes (all fast
decaying evanescent modes). We will discuss how to choose the optimal CRBC
parameters in more depth to minimize the reflection coefficients for given PML
strength σ and width M in Subsection 3.4.

3.3. HABC in a variational formulation

As discussed in Subsection 3.1, the recurrence relations (3.9) can be trans-
formed to a matrix form (3.17) involving only tangential derivatives. By the con-
tinuity conditions (3.19) on Γ, HABC is defined in terms of U = (u0, . . . , uP )>

and ũP such that u = u0 and uP = ũP on Γ, and

−∂yue0 = −L∂2
xU + (−k2

1L + M)U − 1

σ
∂yũ

PeP on Γ, (3.27)

σ∂2
xũ

P + ∂y
1

σ
∂yũ

P + σk2
1ũ
P = 0 in ΩPML, (3.28)

∂yũ
P = 0 on ΓPML (3.29)

with the α-quasiperiodic condition on the lateral boundaries.
The next lemma shows that both conditions (3.9) and (3.17) are in fact

equivalent and they produce the same DtN operator.
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Lemma 3.1. Assume that u solves the Helmholtz equation with wavenumber k1

near Γ and satisfies the HABC (3.27)-(3.29) with the α-quasiperiodic condition
on the lateral boundaries. Then u has the series representation

u(x, y) = ANφN (x) +
∑

n∈Z,n6=N

[
eiµn(y−H) +Rne−iµn(y−H)

]
Anφn(x). (3.30)

Similarly, the auxiliary functions uj for j = 1, . . . , P and ũP can be written as

uj(x) = Q0,j−1
N ANφN (x) +

∑
n∈Z,n6=N

[
Q0,j−1
n +Rj,P−1

n Q0,P−1
n e2iµnσM

]
Anφn(x)

(3.31)
on Γ and

ũP (x, y) = Q0,P−1
N ANφN (x)+

∑
n∈Z,n6=N

[
eiµnσ(y−H)+e2iµnσMe−iµnσ(y−H)

]
Q0,P−1
n Anφn(x)

(3.32)
for H < y < H +M .

Proof. We consider the series representations of u and ũP ,

u(x, y) = (A0
N +B0

N (y −H))φN (x) +
∑

n∈Z,n6=N

[
A0
ne
iµn(y−H) +R0,P−1

n BPn e
−iµn(y−H)

]
φn(x),

ũP (x, y) = (ÃPN + B̃PNσ(y −H))φN (x) +
∑

n∈Z,n6=N

[
ÃPn e

iµnσ(y−H) + B̃Pn e
−iµnσ(y−H)

]
φn(x)

for some constants A0
N , B

0
N , A

0
n, B

P
n , ÃPn and B̃Pn . Here we set An = A0

n and
Bn = B0

n. For n 6= N , the equation (3.27) is reduced to

− iµn(A0
n −R0,P−1

n BPn )e0 = (−µ2
nL + M)Un −

1

σ
∂yũ

P
n e

P , (3.33)

where Un = (u0
n, . . . , u

P
n )> and ũPn are the n-th components of U and ũP , re-

spectively. It is shown in [10] that −µ2
nL+M is invertible, which implies that Un

is uniquely determined in terms of iµn(A0
n − R0,P−1

n BPn ) and σ−1∂yũ
P
n . Hence

it suffices to show that there exist the auxiliary variables ujn of the form

ujn = Q0,j−1
n A0

n +Rj,P−1
n BPn

satisfying (3.33). It is easy to show that the homogeneous equations of (3.33)
corresponding to the j-th row for j = 1, . . . , P − 1 hold true. Since ũPn can be
written as

ũPn (y) = ÃPn e
iµnσ(y−H) + B̃Pn e

−iµnσ(y−H)

with B̃Pn = e2iµnσM ÃPn , we can find the relations between coefficients A0
n, BPn ,

ÃPn and B̃Pn from the P -th component of (3.33) and the condition uP = ũP on
Γ,

iµn(Q0,P−1
n A0

n −BPn ) = iµn(ÃPn − B̃Pn ),

Q0,P−1
n A0

n +BPn = ÃPn + B̃Pn .
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It then follows that that ÃPn = Q0,P−1
n A0

n and B̃Pn = BPn , which gives

BPn = e2iµnσMQ0,P−1
n A0

n

and hence we have

ujn =
[
Q0,j−1
n +Rj,P−1

n Q0,P−1
n e2iµnσM

]
A0
n for j = 0, . . . , P

and
ũPn (y) =

[
eiµnσ(y−H) + e2iµnσMe−iµnσ(y−H)

]
Q0,P−1
n A0

n.

Now, we are left with showing the 0-th equation of (3.33) holds with U . Noting
that the right hand side of the 0-th equation of (3.33) is written as

−µ2
n + a0ã0

a0 + ã0
(A0

n +R0,P−1
n BPn ) +

−µ2
n − ã2

0

a0 + ã0
(Q0,0

n A0
n +R1,P−1

n BPn ),

a straightforward calculation reveals that it is indeed equal to −iµn(A0
n −

R0,P−1
n BPn ).

For the cutoff mode, n = N , since ∂yũ
P
N = 0 on ΓPML, we have B̃PN = 0.

Also, the boundary conditions ∂yuN = B0
N and ∂yũ

P
N = 0 on Γ show that UN

solves the problem MUN = −B0
Ne0. Noting that the 0-th and P -th components

of UN are u0
N = A0

N and uPN = APN = ÃPN , respectively, we apply Gaussian
eliminations from the P -th row to the 0-th row and see that MUN = −B0

Ne0

has a solution only if B0
N = 0 and ujN is uniquely determined as ujN = Q0,j−1

N AN ,
which completes the proof.

Now, we define the Sobolev spaces H1
α(ΩPML) by the subspace of H1(ΩPML)

with α-quasiperiodicity on the lateral boundaries. Denoting H1
α(Γ) = (H1

α(Γ))P+1,
we let X be the subspace of functions (u,U , ũP ) inH1

α,0(Ω)×H1
α(Γ)×H1

α(ΩPML)

such that u|Γ = u0 and uP = ũP |Γ, which is equipped with the weighted norm
depending on aj , ãj and σ,

‖(u,U , ũP )‖2X = ‖u‖2H1(Ω) + ‖U‖2H1
α(Γ) + ‖ũP ‖2H1

σ(ΩPML),

where

‖U‖2H1
α(Γ) =

P−1∑
j=0

1

|aj + ãj |
‖uj + uj+1‖2H1

α(Γ),

‖ũP ‖2H1
σ(ΩPML) = |σ|‖∂xũP ‖2L2(ΩPML) +

1

|σ|
‖∂yũP ‖2L2(ΩPML) + |σ|‖ũP ‖2L2(ΩPML).

If we denote

‖Ξ‖2L =

P−1∑
j=0

1

|aj + ãj |
|ξj + ξj+1|2

for Ξ = (ξ0, . . . , ξP )> ∈ CP+1, then ‖U‖2
H1
α(Γ)

can be written as

‖U‖2H1
α(Γ) =

∑
n∈Z

(1 + λ2
n)‖Un‖2L.

11



Then the problem (2.7) with the radiation condition replaced by HABC (3.27)-
(3.29) is written in a weak sense as finding (u,U , ũP ) ∈X satisfying

aΩ(u, v) + bΓ(U ,V) + aΩPML(ũP , ṽP ) = 〈g, v〉Γ for (v,V, ṽP ) ∈X, (3.34)

where

bΓ(U ,V) = (L∂xU , ∂xV)Γ + ((−k2
1L + M)U ,V)Γ,

aΩPML
(ũP , ṽP ) = (σ∂xũ

P , ∂xṽ
P )ΩPML

+ (
1

σ
∂yũ

P , ∂y ṽ
P )ΩPML

− k2
1(σũP , ṽP )ΩPML

.

3.4. Minimizing the reflection coefficients

Let µmin and µmax be the smallest and the largest axial frequencies of all
propagating modes,

µmin = min{µn : µ2
n > 0} and µmax = max{µn : µ2

n > 0},

respectively. Also, we let µ̃min = min{|µn| : µ2
n < 0} be the smallest decay

rate of evanescent modes.
Choosing the optimal CRBC parameters is, in fact, is related to the mini-

mization of the maximal |Zn|, known as the third Zolotarev problem, and it has
a long history dating back the late 1870s [15], see also [1, 12, 13]. It turns out
that the optimal imaginary CRBC parameters for propagating modes whose ax-
ial frequencies are in [µmin, µmax] are obtained by solving the min-max problem

ρprop = min
aj ,ãj∈iR−

max
µmin≤µ≤µmax

np−1∏
j=0

∣∣∣∣ (aj + iµ)(ãj + iµ)

(aj − iµ)(ãj − iµ)

∣∣∣∣ . (3.35)

The min-max problem (3.35) can be solved by using Remez algorithm [13] nu-
merically or by using elliptic functions [1, 7, 10] analytically. In addition, the
minimal values decay exponentially with respect to the number of parameters,

ρprop ≤ 2e−
nπ2

ln(16/γ) (3.36)

with γ = µmin/µmax, n = np.
With regard to the real CRBC parameters for evanescent modes we first

determine an upper bound µ̃max of the decay rates of evanescent modes that
CRBC is responsible for by solving the inequality

e−2µ̃maxσ0M ≤ e−2µminσ0Mρprop,

that is,

µ̃max =
1

2σ0M

(
2µminσ0M + ln

1

ρprop

)
,

and the reflection coefficients of evanescent modes of µ̃n larger than µ̃max are
smaller than e−2µminσ0Mρprop due to PML without considering the effect of

12



CRBC. Then we solve the similar min-max problem for evanescent modes whose
decay rates are in [µ̃min, µ̃max],

ρevan = min
aj ,ãj∈R+

max
µ̃min≤µ̃≤µ̃max

np+ne−1∏
j=np

∣∣∣∣ (aj − µ̃)(ãj − µ̃)

(aj + µ̃)(ãj + µ̃)

∣∣∣∣ , (3.37)

and its minimal value also decreases at the rate of (3.36) with γ = µ̃min/µ̃max,
n = ne. Therefore it can be concluded that the reflection coefficients are
bounded by

|Rn| ≤


e−2µminσ0Mρprop for µn ∈ [µmin, µmax],

e−2µ̃minσ0Mρevan for µ̃n ∈ [µ̃min, µ̃max],

e−2µ̃maxσ0M for µ̃n ∈ (µ̃max,∞)

which approaches zero rapidly as np, ne and σ0M tend toward infinity. We let
EHABC be the maximal reflection coefficient of HABC,

EHABC = max{e−2µminσ0Mρprop, e−2µ̃minσ0Mρevan}. (3.38)

In the sequel, we also will use EHABC as the maximal reflection coefficient mul-
tiplied by a generic constant C independent of CRBC and PML for the later
analysis. The constant C throughout the paper may take different values in
different places but does not depend on CRBC and PML parameters.

If there exist grazing modes, some CRBC parameters are set up aiming at
the modes to eliminate completely reflection errors from such modes. These
types of modes are related with the small frequencies µn such that |e−2iµnσM |
is larger than desired tolerance τ from the PML point of view or are related
with the small γ � 1 in (3.36) from the CRBC point of view. To distinguish
grazing modes from others, let N0 be the set of indices n of grazing modes,
and N1 = Z \ N0. In other words, N0 consists of only a few indices such that
|e−2µnσM | > τ and −iµn for n ∈ N0 is taken as CRBC parameters. The rest of
modes of n ∈ N1 are taken care of by optimized CRBC and PML. In this case,
µmin and µ̃min are defined as

µmin = min{µn : µ2
n > 0, n ∈ N1} and µ̃min = min{|µn| : µ2

n < 0, n ∈ N1}.

4. Well-posedness and convergence

In this section we investigate the well-posedness of the problem (3.34) and
the convergence of solutions u of (3.34) in Ω to the solution uto of (2.7). To do
this, by using the DtN operator for HABC we rewrite the problem (3.34) as an
equivalent problem to find u ∈ H1

α,0(Ω) satisfying

aΩΩ(u, v)− 〈THABC(u), v〉Γ = 〈g, v〉Γ for v ∈ H1
α,0(Ω). (4.39)

We first show the convergence of THABC to T in a norm sense.

13



Lemma 4.1. Assume that CRBC parameters are chosen as in Subsection 3.4
and let EHABC be defined by (3.38). Then for sufficiently large np, ne and σ0M ,
it holds that

‖(T − THABC)v‖
H

−1/2
α (Γ)

≤ EHABC‖v‖H1/2
α (Γ)

for v ∈ H1/2
α (Γ).

Proof. By using the definition of T and THABC given by (2.4) and (3.26), we
can show that

(T − THABC)(v) =
∑
n∈N1

iµn
2Rn

1 +Rn
vnφn

for v =
∑
n∈Z vnφn. Since EHABC � 1 for large np, ne and σ0M , it follows that

‖(T − THABC)v‖2
H

−1/2
α (Γ)

≤ E2
HABC

∑
n∈N1

|µn|2

1 + λ2
n

(1 + λ2
n)1/2|vn|2

≤ E2
HABC‖v‖2H1/2

α (Γ)
,

which completes the proof.

Now we can prove the well-posedness of the problem (4.39) for the solution
u defined on the physical domain Ω.

Theorem 4.2. Assume that ω is not an eigenvalue of the diffraction grating
problem. If EHABC is sufficiently small, then there exists a unique solution
u ∈ H1

α,0(Ω) to the problem (4.39) satisfying

‖u‖H1(Ω) ≤ C‖g‖H1/2
α (Γ)

.

Proof. We will first show that

‖w‖H1(Ω) ≤ C sup
06=ψ∈H1

α,0(Ω)

|aΩ(w,ψ)− 〈THABC(w), ψ〉Γ|
‖ψ‖H1(Ω)

(4.40)

for w ∈ H1
α(Ω). In fact, this inf-sup condition follows from the inf-sup condition

(2.8) of the problem (2.7) and the convergence result of THABC. We start with
the inf-sup condition (2.8)

‖w‖H1(Ω) ≤ C sup
0 6=ψ∈H1

α,0(Ω)

|aΩ(w,ψ)− 〈T (w), ψ〉Γ|
‖ψ‖H1(Ω)

.

Lemma 4.1 leads us to

‖w‖H1(Ω) ≤ C

(
sup

06=ψ∈H1
α,0(Ω)

|aΩ(w,ψ)− 〈THABC(w), ψ〉Γ|
‖ψ‖H1(Ω)

+ ‖(T − THABC)(w)‖
H

−1/2
α (Γ)

)

≤ C sup
06=ψ∈H1

α,0(Ω)

|aΩ(w,ψ)− 〈THABC(w), ψ〉Γ|
‖ψ‖H1(Ω)

+ EHABC‖w‖H1(Ω).
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For HABC such that EHABC < 1/2, we obtain (4.40).
Since aΩ(w,ψ) = aΩ(ψ,w) and 〈THABC(w), ψ〉Γ = THABC(ψ), w〉Γ the inf-

sup condition for the adjoint problem also holds true and hence the well-posedness
follows.

The convergence of approximate solutions satisfying HABC is established in
the next theorem.

Theorem 4.3. Assume the same conditions as those in Theorem 4.2, and let
uto and u be the solutions to the problems (2.7) and (4.39), respectively. Then
the approximate solution u converges to uto exponentially,

‖uto − u‖H1(Ω) ≤ EHABC‖g‖H1/2
α (Γ)

.

Proof. From (2.7) and (4.39), it can be shown that

aΩ(uto − u, v)− 〈T (uto − u), v〉Γ = 〈(T − THABC)u, v〉Γ
for all v ∈ H1

α,0(Ω). Therefore, the inf-sup condition (2.8), Lemma 4.1 and
Theorem 4.2 give

‖uto − u‖H1(Ω) ≤ C‖(T − THABC)u‖
H

−1/2
α (Γ)

≤ EHABC‖g‖H1/2
α (Γ)

,

which is the desired convergence estimate.

We are left with the stability of the CRBC auxiliary variables U and the
PML solution ũP to the problem (3.34). To do this, we recall (3.15) and denote
Zl,mn = Ql,mn Rl,mn . Clearly, |Zl,mn | ≤ 1. Since |aj | ≤ |ãj |, |Ql,mn | ≤ 1 also holds
true. In addition, it is shown in [10] that the parameters obtained for minimizing
the reflection errors satisfy

1 <

∣∣∣∣ ãjaj
∣∣∣∣ < C, (4.41)

from which the next lemma follows, see [10].

Lemma 4.4. Assume that CRBC parameters are selected as described in Sub-
section 3.4. Then it holds that

|1 +Qj,jn |√
|aj + ãj |

≤ C√
|µn|

and
|1 +Rj,jn |√
|aj + ãj |

≤ C√
|µn|

Now, we are ready to estimate the CRBC auxiliary variables.

Lemma 4.5. Let µmin = min{|µn| : n 6= N} be the minimal nonzero axial
frequency. Then the auxiliary variables U = (u0, u1, . . . , uP )> solving (3.27)-
(3.29) satisfy the estimates

‖U‖H1
α(Γ) ≤

C
√
P

√
µmin

‖u‖H1(Ω)

and
‖uP ‖

H
1/2
α (Γ)

≤ C‖u‖H1(Ω).
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Proof. We use (3.31) to see that for n 6= N

ujn + uj+1
n =

[
(1 +Qj,jn )Q0,j−1

n + (1 +Rj,jn )Q0,j
n Zj+1,P−1

n e2iµnσM
]
An.

Since |Ql,mn | ≤ 1 and |Zl,mn e2iµnσM | ≤ 1, by Lemma 4.4 it can be shown that

|ujn + uj+1
n |√

|aj + ãj |
≤

(
|1 +Qj,jn |√
|aj + ãj |

+
|1 +Rj,jn |√
|aj + ãj |

)
|An| ≤

C√
|µn|
|An|. (4.42)

Similarly, for n = N

ujN + uj+1
N = (1 +Qj,jN )Q0,j−1

N AN =

(
1 +

aj
ãj

)
Q0,j−1
N An,

which yields that

|ujN + uj+1
N |√

|aj + ãj |
≤ C√

|ãj |
|AN | ≤

C
√
µmin

|AN |. (4.43)

Combining (4.42) and (4.43) gives the desired estimate,

‖U‖2H1
α(Γ) ≤ C

P (1 + λ2
N )

µmin
|AN |2 +

∑
n∈Z,n6=N

P (1 + λ2
n)

|µn||1 +Rn|2
|(1 +Rn)An|2


≤ CP

µmin
‖u0‖2

H
1/2
α (Γ)

≤ CP

µmin
‖u‖2H1(Ω).

The second and third inequalities are obtained by using the fact that u0
n =

(1 +Rn)An and a trace inequality for u0 = u|Γ.
Similarly, we use again (3.31) with j = P , |Q0,P−1

n | ≤ 1 and a trace inequality
to show that

‖uP ‖2
H

1/2
α (Γ)

= (1 + λ2
N )1/2|Q0,P−1

N AN |2

+
∑

n∈Z,n6=N
(1 + λ2

n)1/2|Q0,P−1
n (1 + e2iµnσM )|2|An|2

≤ C‖u0‖2
H

1/2
α (Γ)

≤ C‖u‖2H1(Ω),

which completes the proof.

For the stability result of the PML solution ũP , we show the coercivity of the
sesquilinear form aΩPML(·, ·) in H1

α,0(ΩPML), the subspace of functions vanishing
on Γ in H1

α(ΩPML). It can be established by the same idea as that in [9].

Lemma 4.6. The sesquilinear form aΩPML(·, ·) is coercive in H1
α,0(ΩPML) ×

H1
α,0(ΩPML),

‖w‖H1
σ(ΩPML) ≤ Cσ0M |aΩPML

(w,w)|

for all w ∈ H1
α,0(ΩPML).
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Proof. Denoting < = <(aΩPML(w,w)) and = = =(aΩPML(w,w)), we first note
that

1

σ0
< = ‖∂xw‖2L2(ΩPML) +

1

|σ|2
‖∂yw‖2L2(ΩPML) − k

2
1‖w‖2L2(ΩPML), (4.44)

1

σ0
= = ‖∂xw‖2L2(ΩPML) −

1

|σ|2
‖∂yw‖2L2(ΩPML) − k

2
1‖w‖2L2(ΩPML), (4.45)

which gives
2

|σ|2
‖∂yw‖2L2(ΩPML) =

1

σ0
(<− =) . (4.46)

Since w vanishes on Γ, we can prove the Poincaré type inequality,

‖w‖L2(ΩPML) ≤M‖∂yw‖L2(ΩPML). (4.47)

Therefore, by substituting (4.44) into the definition of the norm ‖ · ‖H1
σ(ΩPML)

and then by using (4.47) and (4.46) subsequentially, we obtain

‖w‖2H1
σ(ΩPML) = |σ|‖∂xw‖2L2(ΩPML) +

1

|σ|
‖∂yw‖2L2(ΩPML) + |σ|‖w‖2L2(ΩPML)

=
|σ|
σ0
<+ (k2

1 + 1)|σ|‖w‖2L2(ΩPML)

≤ 2|σ|+ (k2
1 + 1)|σ|3M2

2σ0
<− (k2

1 + 1)|σ|3M2

2σ0
=

≤ Cσ2
0M

2|aΩPML
(w,w)|2,

which is the required inequality.

The stability of the PML solution ũP solving (3.28)-(3.29) with ũP = uP on
Γ can be proved as follows.

Lemma 4.7. Let ũP be the solution to the problem (3.28)-(3.29) with ũP = uP

on Γ. Then ũP satisfies

‖ũP ‖H1
σ(ΩPML) ≤ Cσ0M‖u‖H1(Ω).

Proof. The solution ũP ∈ H1
α(ΩPML) satisfies

aΩPML
(ũP , v) = 0 for v ∈ H1

α,0(ΩPML)

with the boundary condition ũP |Γ = uP on Γ. Then it follows from Lemma 4.6
and Lemma 4.5 that

‖ũP ‖H1
σ(ΩPML) ≤ Cσ0M‖uP ‖H1/2

α (Γ)
≤ Cσ0M‖u‖H1(Ω)

and the proof is completed.

Finally, we can combine all estimates to obtain the well-posedness result of
the problem (3.34).
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Figure 2: One cell of a diffraction grating of period L and uniform quadrilateral decomposition
of the absorbing layer

Theorem 4.8. The problem (3.34) has a unique solution (u,U , ũP ) ∈X satis-
fying

‖(u,U , ũP )‖X ≤ C(

√
P

√
µmin

+ σ0M)‖g‖
H

1/2
α (Γ)

.

Proof. The existence and uniqueness is guaranteed by Theorem 4.2 and Lemma 3.1.
The stability follows from Theorem 4.2, Lemma 4.5 and Lemma 4.7.

5. CRBC Parameters for finite element implementation

In this section we discuss how to select the optimal CRBC parameters in
the actual finite element implementation. Assume that the absorbing layer for
HABC is decomposed into uniform quadrilateral subdomains with mesh size h
and we denote by Ngp the number of grid points along the axis of the propagation
direction. We further assume that Ngp ≥ #N0. Among Ngp horizontal grid
lines, we assign P grid lines to CRBC and the rest of Ngp − P lines to PML.

The horizontal grid lines assigned to CRBC are considered as Γ for each uj ,
j = 1, . . . , P , see Figure 2. Here at least 1 grid point needs to be employed for
PML for absorbing fast decaying evanescent modes. For given h, Ngp and σ0,
the procedure to determine the best P and CRBC parameters is described as
follows.

(1) If N0 6= ∅, then we take some aj and ãj such that aj = ãj = −iµn for
each n ∈ N0 and set Ngp to be Ngp −#N0.

(2) For np = 0, . . . ,Ngp − 1,

i. when np = 0,
we define HABC as PML without CRBC and compute the maxi-
mal reflection coefficient %(np) of HABC as the maximal reflection
coefficient of PML of width M = hNgp,

%(np) = max
n∈N1

{|e2iµnσM |} = e−2 min{µmin,µ̃min}σ0M . (5.48)
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ii. When np 6= 0,
we solve the min-max problem for propagating modes in the spectral
range [µmin, µmax],

ρ̃prop = min
aj ,ãj∈iR−

max
µmin≤µ≤µmax

np−1∏
j=0

∣∣∣∣ (aj + iµ)(ãj + iµ)

(aj − iµ)(ãj − iµ)

∣∣∣∣ . (5.49)

It is just the maximal reflection coefficient for propagating modes
without considering the effect of PML. After the PML width M is
set, the actual maximal reflection coefficient affected by PML for
propagating modes will be recalculated.

For ne = 0, . . . ,Ngp − np − 1,

(A) when ne = 0,
HABC for evanescent modes acts as PML with M = h(Ngp−np)
and we compute

ρevan(ne) = max
n∈N1,µ2

n<0
{|e2iµnσM |} = e−2µ̃minσ0M .

(B) When ne 6= 0,

(a) set M = h(Ngp − np − ne) and compute the actual maximal
reflection coefficient of propagating modes affected by PML
with width M ,

ρprop(ne) = e−2µminσ0M ρ̃prop.

(b) Determine an upper bound µ̃max of the spectral range of
evanescent modes that CRBC takes care of by solving the
inequality

e−2µ̃maxσ0M ≤ ρprop(ne), (5.50)

that is,

µ̃max =
1

2σ0M
ln

1

ρprop(ne)
.

(c) Solve the min-max problem for evanescent modes in the spec-
tral range [µ̃min, µ̃max],

ρ̃evan = min
aj ,ãj∈R+

max
µ̃min≤µ̃≤µ̃max

np+ne−1∏
j=np

∣∣∣∣ (aj − µ̃)(ãj − µ̃)

(aj + µ̃)(ãj + µ̃)

∣∣∣∣
(5.51)

and set the actual maximal reflection coefficient for evanes-
cent modes in the spectral range [µ̃min, µ̃max],

ρevan(ne) = e−2µ̃minσ0M ρ̃evan.
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Figure 3: Maximal reflection coefficients for k1 = 30, α = π/3, σ0 = 30.

(d) Determine %(np) = min
0≤ne≤Ngp−np−1

{max{ρprop(ne), ρevan(ne)}}

and ne at which the minimum is attained.
(3) Find np for which min

0≤np≤Ngp−1
{%(np)} takes the minimal value and its

corresponding ne. The optimal CRBC parameters are the solutions to the
min-max problems (5.49) and (5.51) for those np and ne.

Figure 3 presents an example when k1 = 30, α = π/3, σ0 = 30, L = 1, h =
1/800 and Ngp = 10. According to Figure 3, the maximal reflection coefficient
has the minimum value ≈ 1.201 × 10−6 when np = 2 (from Figure 3 (a)) and
ne = 6 (from Figure 3 (b)). In this particular example, the best performance
of HABC is achieved when optimized CRBC occupies 8 grids and PML does 2
grids. Obviously, HABC with (np, ne) = (2, 6) works better than the pure PML
of np = 0 with the reflection coefficient ≈ 1.229× 10−2.

6. Numerical experiments

In this section, we present numerical examples that can illustrate the con-
vergence theory for HABC developed in this paper. As the first example, we
consider the waveguide problem in Ω = (0, L)× (0, δ)(L = 1 and δ = 0.05) with
the α-quasiperiodic boundary condition on the left(x = 0) and the right(x = L)
boundaries. In order to demonstrate the convergence of approximate solutions,
it is assumed that the wavenumber k1 is constant in Ω, k1 = 4π or 8π, and
the wave fields are given on the bottom boundary Γ2 (y = 0) as a Dirichlet
condition for a wave source so that the exact radiating solution is defined by

u(x, y) =

2m2∑
n=2m1

1

2(m2 −m1 + 1)
eiµnyφn(x)

where m1 = d−L(k1 + α)/(2π)e and m2 = bL(k1 − α)/(2π)c. Here m1 and m2

are the bounds of indices such that the modes of index n with m1 ≤ n ≤ m2

are propagative and others are evanescent.
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(a) Maximal reflection coefficients for k1 = 4π
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(b) Relative L2-error plots for k1 = 4π
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(c) Maximal reflection coefficients for k1 = 8π
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(d) Relative L2-error plots for k1 = 8π

Figure 4: Relative L2-error plots of HABC with PS-I
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θ π/2.001 π/3 π/4 π/6 π/8 π/10

µmin 0.0098 6.2832 7.6574 10.8828 5.9058 7.3863
µmax 12.5664 12.4531 12.2939 12.5664 12.4796 12.3351
γ 7.8500E-4 0.5045 0.6229 0.8660 0.4732 0.5988

µ̃min 0.0098 6.7192 8.4961 14.0496 6.2630 8.1288

Ngp P J P J P J P J P J P J

1 0 1 0 1 0 1 0 1 0 1 0 1
2 0 2 0 2 0 2 0 2 0 2 0 2
3 2 1 2 1 2 1 2 1 2 1 2 1
4 2 2 3 1 3 1 3 1 3 1 3 1
5 4 1 3 2 3 2 3 2 3 2 3 2
6 4 2 5 1 5 1 3 3 5 1 5 1
7 6 1 6 1 6 1 2 5 6 1 6 1
8 7 1 6 2 6 2 6 2 5 3 6 2
9 8 1 5 4 5 4 7 2 5 4 5 4
10 9 1 8 2 5 5 6 4 8 2 5 5

Table 1: Test for k1 = 4π; γ = µmin/µmax; P and J are the numbers of grid points along the
axis of the waveguide used for CRBC and PML, respectively, so that Ngp = P + J and PML
length M is M = hJ .

We compute bilinear finite element approximations on uniform quadrilateral
mesh with the mesh size h = 1/800 with the help of the finite element library
deal.II [2]. HABC with the number of grid points, Ngp, along the axis of the
waveguide is applied to the top boundary Γ (y = δ) for minimizing reflection
errors of wave fields propagating along the positive y-axis, that is, the absorbing
layer is the rectangular domain (0, L)× (δ, δ + hNgp). In this example, we test
the performance of HABC with respect to 1 ≤ Ngp ≤ 10 and with respect to
the angle θ = π/m (m = 2.001, 3, 4, 6, 8, 10) of incident fields associated with
the quasiperiodic constant α = k1 sin θ. The PML strength is set to be σ0 = 30.
When CRBC parameters are selected by the procedure in Section 5 assuming
N0 is empty, we call it parameter selection I(PS-I). On the other hand, when
we take care of grazing modes, i.e., N0 6= ∅, it is called parameter selection
II(PS-II).

Figure 4 (a) and (c) for k1 = 4π and 8π, respectively, report that the maximal
reflection coefficients of HABC for PS-I decay exponentially with increasing Ngp

for all θ. Table 1 also shows how Ngp is split into P (number of grid points
for CRBC) and J(number of grids points for PML) to achieve the maximal
reflection coefficients for k1 = 4π depicted in Figure 4 (a). It indicates that
usually more than half of the grid points are used for CRBC. Accordingly the
actual convergence of approximate solutions with respect to the L2-norm is
observed in Figure 4 (b) and (d) as Ngp increases until finite element errors
are dominant. It is worth pointing out that when θ = π/6, there are cutoff
modes for both k1, i.e, there exist integers n such that λn = k1/2 + 2nπ = ±k1.
We see that HABC terminated by PML with the Neumann condition can well
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(a) Real part of the exact solution

(b) Real part of the approximate solution

(c) Imaginary part of the exact solution

(d) Imaginary part of the approximate solution

Figure 5: Snapshots of the solutions when k1 = 30, θ = π/3, δ = 0.05, Ngp = 10, h = 1/800.

capture the character of the cutoff modes, that would become modes difficult
for HABC with the Dirichlet condition to handle. The snapshots of the exact
and approximate solutions for k1 = 30, θ = π/3 and Ngp = 10 are presented
in Figure 5. The horizontal line represents the interface between the physical
domain Ω and the absorbing layer of HABC.

One of interesting results exhibited in Figure 4 is the relatively slow conver-
gence when θ = π/2.001 for grazing incidence. It turns out, in this case, that
there exist grazing modes of small axial frequency µmin = µ̃min ≈ 0.0098 of both
types (propagating and evanescent) of modes as seen in Table 1. In particu-
lar, for propagating modes, we have γ = µmin/µmax relatively small compared
with other cases and hence the presence of the grazing modes is the reason
for relatively large reflection coefficients in view of (3.36) and (5.48), which in
turn results in the slow convergence. In order to improve the performance of
HABC, we can apply HABC taking care of the grazing modes by using PS-II
with a0 = ã0 = −iµmin and a1 = ã1 = µ̃min for the grazing modes. As shown in
Figure 6, the errors resulting from HABC with PS-II are larger than those from
HABC with PS-I for small Ngp ≤ 4 since two grid points are already assigned
for the grazing modes and so there are not much resource that can reduce errors
from other modes. However, HABC with PS-II can reduce the errors drastically
as Ngp becomes larger than 4 and approximate solutions resulting from HABC
with PS-II converge faster that those from HABC with PS-I.

We also compare the performance of HABC with PML truncated by the DtN
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(a) Relative L2-errors for k1 = 4π
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(b) Relative L2-errors for k1 = 8π

Figure 6: Relative L2-error plots for θ = π/2.001 of HABC with parameter selection I and II

condition for grazing modes introduced in [14]. To this end, we consider the
problem with θ = π/2.001 and θ = π/2.05. When θ = π/2.001, µmin = 0.0098
and µ̃min = 0.0098 as seen in Table 1, and when θ = π/2.05, µmin = 0.9626
and µ̃min = 0.9630. We use PML of a piecewise constant stretching function
ỹ(y) = σy with

σ =

{
1 for y ≤ H
σr + iσi for y > H

Since the DtN condition deals with the grazing modes, the coordinate stretching
function σ of PML is chosen in order to reduce the reflection errors of the modes
corresponding to the next smallest axial frequency and the next smallest decay
rate, denoted by µmin and µ̃min again, respectively, by abuse of notation: in this
experiment

θ = π/2.001 µmin = 16.6237 µ̃min = 18.8495,

θ = π/2.05 µmin = 16.6028 µ̃min = 18.8188.

Noting that the reflection error of PML is determined by the minimal value of
e−2σiµminM and e−2σrµ̃minM with PML width M , the parameters σr and σi are
chosen in a way that σiµmin = σrµ̃min (which is denoted by σµ) so that the
reflection errors from propagating modes and evanescent modes are balanced.
The values of σµ are set to be σµ = 96, 190, 284 and 378 and the corresponding
stretching constants σ of PML are

5.09 + 5.77i, 10.07 + 11.42i, 15.11 + 17.14i, 20.10 + 22.79i for θ = π/2.001,

5.10 + 5.78i, 10.09 + 11.44i, 15.09 + 17.10i, 20.08 + 22.76i for θ = π/2.05,

respectively. The relative L2-errors with respect to number of grid points, Ngp,
in the absorbing layer are presented in Figure 7. Among the results for vari-
ous σµ, PML with σµ = 190 can produce the best approximate solutions for
sufficiently large Ngp. As noticed in [9], finite element approximate solutions
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Figure 7: Comparison of HABC with PML truncated by the DtN condition in terms of relative
L2-error.

obtained by uniform mesh and PML with large σ can be worsen due to the high
anisotropy of the PML problem as for the case σµ = 284 and 378. Figure 7 also
shows the results of PML with σµ = 190 truncated simply by a homogeneous
Neumann condition (green curves with ∗-marker). Since µmin and µ̃min are too
small for θ = π/2.001, the homogeneous Neumann condition can give as accu-
rate solutions as the DtN truncation does. In contrast, it is shown that when
θ = π/2.05, PML truncated by the DtN condition is superior to PML truncated
by the homogeneous Neumann condition. However, it reveals that approximate
solutions obtained by HABC with parameter selection II stands out from all
other results for both θ. These results are not surprising because the number of
grids points P and J , used for CRBC and PML respectively, are determined in
such a way that the maximal reflection coefficient is minimized.

The second experiment is conducted to illustrate the performance of HABC
applied to a diffraction grating problem. The example is the diffraction grating
of period L = 0.5 whose one cell is shown as in Figure 2 with a = 0.2, b = 0.6,
c = 0.1 and H = 1.1. Assuming that wavenumber inside the grating media is
k2 = 1 and incident wave fields are approaching the diffraction grating structure
with θ = π/6, we use HABC with Ngp = 5, σ0 = 30, and finite elements
of h = 0.01 to solve the α-quasiperiodic problem in one cell for k1 = 12.5 and
k1 = 8π+0.1. Once finite element solutions are obtained in the cell, we construct
solutions in the periodic 4 cells via the α-quasiperiodicity, which are presented
in Figure 8. It illustrates well scattered fields and its α-quasiperiodicity in the
diffraction grating.
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(a) k1 = 12.5, k2 = 1, θ = π/6 (b) k1 = 8π + 0.1, k2 = 1, θ = π/6

Figure 8: Snapshots of real parts of approximate solutions to the diffraction grating problem
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[4] J.-P. Bérenger, A perfectly matched layer for the absorption of electromag-
netic waves, J. Comput. Phys. 114 (2) (1994) 185–200.
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