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Abstract In this paper we will analyze the convergence of the non-overlapping
double sweep domain decomposition method (DDM) with transmission conditions
based on PMLs for the Helmholtz equation. The main goal is to establish the con-
vergence of the double sweep DDM of both the continuous level problem and the
corresponding finite element problem. We show that the double sweep process can
be viewed as a contraction mapping of boundary data used for local subdomain
problems not only in the continuous level and but also in the discrete level. It
turns out that the contraction factor of the contraction mapping of the continu-
ous level problem is given by an exponentially small factor determined by PML
strength and PML width, whereas the counterpart of the discrete level problem
is governed by the dominant term between the contraction factor similar to that
of the continuous level problem and the maximal discrete reflection coefficient re-
sulting from fast decaying evanescent modes. Based on this analysis we prove the
convergence of approximate solutions in the H1-norm. We also analyze how the
discrete double sweep DDM depends on the number of subdomains and the PML
parameters as the finite element discretization resolves sufficiently the Helmholtz
and PML equations. Our theoretical results suggest that the contraction factor for
the propagating modes depends linearly on the number of subdomains. To ensure
the convergence, it is sufficient to have the PML width growing logarithmically
with the number of subdomains. In the end, numerical experiments illustrating
the convergence will be presented as well.
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1 Introduction

Solving time-harmonic wave propagation problems governed by the Helmholtz
equation in the high-frequency regime leads to significant computational challenges
due to the highly oscillatory nature of solutions that requires extremely large linear
systems. For efficient solvers to the wave propagation problems various efforts have
been made such as multigrid methods [6,13,37,40], shifted-Laplace preconditioners
[9,14,16,39] and analytic incomplete LU (AILU) preconditioners [12,17,18].

The double sweep domain decomposition method (DDM) to be studied in this
paper is conceptually originated from the idea of the last category among others.
The AILU preconditioning technique in [17] is thought of as an approximate block
LU factorization with a transparent Dirichlet-to-Neumann (DtN) condition for
each subdomain problem replaced by a second order local approximation. Finding
solutions by forward substitutions followed by backward substitutions sequentially
with the approximate block LU factorization gives rise to an approximate inverse
of the Helmholtz operator. Not surprisingly, its performance depends significantly
on the accuracy of the approximate DtN condition. After the efficient absorbing
boundary condition, so-called perfectly matched layer (PML), prevailed in wave
propagation communities, the authors of [12] developed an improved precondi-
tioner based on PML instead of the second order approximation in approximate
LU factorization of [17].

A transmission condition based on a low-order approximate radiation condition
was studied in [10] for Schwarz methods for the Helmholtz equation almost three
decades ago. A quantitative convergence theory of the method of [10] for general
domain and general decomposition was established only recently in [20]. The use
of PML transmission conditions was first proposed in [38] and it was implemented
successfully in [34]. The idea of utilizing PML for transmission conditions received
more attention after the advent of [12] which brought about flourishing research
on the double sweep DDM such as [8,15,29,35,41]. Each of these is developed
from different points of views and has different formulations. The method of [8]
transfers volume sources from one subdomain to a neighboring subdomain with
radiation conditions on both sides of sweeping directions in the forward sweep
whereas during the backward sweep it employs a radiation condition on the side
to the direction of the backward sweep and a Dirichlet condition on the opposite
side. On the other hand, subdomain problems of [29] communicate with neigh-
boring subdomain problems via transmission conditions with Neumann data on
interfaces instead of volume sources to reduce computational costs of subdomain
problems. [35,41] also make use of Neumann data (which it is pointed out in [35]
that have the same jump properties as single layer potentials) for subdomain prob-
lems but produce discontinuous approximate solutions compared with continuous
approximate solutions of [8,29]. For an extensive review on sweeping precondition-
ers for the Helmholtz equation, we refer to [19] which gives unifying explanations
of the equivalence between different formulations of sweeping domain decomposi-
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tion solvers including AILU factorizations, source-transfer methods and optimized
Schwarz methods.

It is worth noting that there are recent developments of the sweeping domain
decomposition in two directions with special care of cross-points, rather than the
one-way domain decomposition used in the above-mentioned methods, for solving
the Helmholtz equation in the free space [30,32]. The former [30] is an extension
of the source transfer method [8] based on PML transmission conditions, and the
latter [32] proposes a new approach of an optimized Schwarz method utilizing
Padé-type high-order absorbing transmission conditions.

In this paper, we consider a wave propagation problem governed by the Helmholtz
equation posed in a waveguide. We take the double sweep formulation in [19] and
employ PML with a piecewise constant coordinate stretching function studied in
[25] for transmission conditions. As a main goal, we analyze convergence in both
continuous and discrete levels. It is noted that convergence analyses of the dou-
ble sweep DDM for continuous level problems can be found in [8,29]. In fact the
double sweep DDM was applied in [33] almost two decades earlier to solve the
convection-diffusion problem and its convergence was analyzed based on Fourier
analysis, which is the main tool used in the convergence analysis of this paper.
The methods in [8,29] generate a sequence of approximate solutions continuous
on interfaces between subdomains, and a convergence of approximate solutions is
proved in the H1 Sobolev space for a full computational domain. However, the
formulation in [19] gives rise to approximate solutions that are discontinuous on
interfaces between subdomains. So we will provide an H1-norm convergence of
approximate solutions in each subdomain instead of the full domain, exhibiting
that the continuous double sweep DDM converges linearly with contraction factor
depending on the reflection coefficient of PML and the number of subdomains
of a decomposition of the domain. Here we note that as opposed to the double
sweep DDMs in [8,29], the method in this paper has the same formulation of each
subdomain problem in the forward sweep and the backward sweep. Different for-
mulations between the forward sweep and the backward sweep used in [8,29] are
the price to pay for obtaining the continuity of each iterate.

On the other hand, to the extent of our knowledge, a convergence analysis for
discrete level problems has not been yet available. To investigate the convergence
of the double sweep DDM applied to the linear system resulting from the finite
element discretization, we consider a quasi-uniform and shape-regular quadrilat-
eral/hexahedral mesh of a computational domain, which is obtained by extruding
a quasi-uniform and shape-regular mesh on a cross-sectional boundary into the
waveguide with uniformly distributed grids along the axis of the waveguide. With
this specialized mesh, we can find local solutions to subdomain problems by using
the dispersion analysis for each discrete cross-sectional eigenvalue. With the help
of the solution formula in terms of the roots of the characteristic equation of cer-
tain difference equations, discrete DtN operators for the exact radiation condition
and PML can be derived. Surprisingly, it turns out that the reflection coefficients
of the discrete level problem behave differently from those of the continuous level
problem. More precisely, whereas the reflection coefficients of the continuous level
problem decay exponentially as the decay rate of evanescent modes increases, those
of the discrete problem grow to some number close to one in magnitude for large
mode indices. As a result, if fast decaying evanescent modes are involved in iterates
in the discrete level, sequences generated by the double sweep DDM are doomed
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to converge slowly, although we can expect the same rate of convergence of the
discrete problems as that of the continuous problem otherwise.

As for the convergence rate of the method, there are many significant factors
determining the maximal active discrete reflection coefficient in numerical imple-
mentations such as what types of Fourier modes compose each sequence generated
by the double sweep algorithm, as mentioned earlier, and how strong PML param-
eters are used. The performance of the discrete double sweep DDM depends on
wavenumber as well, however it is in the sense of that it depends on the location
of wavenumber with respect to the distribution of the cross-sectional eigenval-
ues. Indeed, the closer the wavenumber is to cross-sectional eigenvalues the larger
the discrete maximal reflection coefficient is. More importantly, the main conver-
gence analysis reveals that the convergence rate is also affected by the number
of subdomains, denoted by J , that is, as the finite element discretization resolves
sufficiently the Helmholtz and PML equations, the contraction factor for the prop-
agating modes depends linearly on the number of subdomains, J , and hence the
number of iterations can increase proportionally to the log of J . From a compu-
tational point of view, it is important to minimize computational costs by taking
small number of grid points in PML along the axis of waveguides, denoted by Np.
It is shown that the growth of Np is of O(ln(J)) as well as O(ln(n)) to keep the
same number of iterations with n grid points in each direction of square domains
with uniform mesh, and the cost required for one sweep is of order O(N2

pn
2) .

This result is consistent with one observed in [12,35] based on PML of piecewise
quadratic stretching functions. These parameter-dependence of the double sweep
DDM will be advocated by various numerical experiments.

At last, this paper is organized as follows. In Section 2 for preliminaries, we
discuss the solution formula of the Helmholtz equation in a straight waveguide and
study PML as an approximate DtN operator. In Section 3, we introduce the dou-
ble sweep DDM algorithm in the continuous level and analyze its convergence. In
Section 4, we study the finite element subdomain transmission problem. Here we
discuss how solutions of the finite element problem in the reference subdomain are
represented in terms of discrete cross-sectional eigenvectors and how errors propa-
gate in local subdomains by analyzing discrete transmission conditions. Section 5
deals with the double sweep DDM algorithm in the discrete level and presents the
convergence analysis of the discretized problem. Section 6 is devoted to showing
numerical experiments to illustrate the convergence theory.

2 Preliminaries

2.1 Model problem

Let Ω∞ = (−∞, a)× Γ be a semi-infinite waveguide in Rd, d = 2 or 3 with a > 0
constant and Γ a Lipschitz bounded domain in Rd−1. See Fig. 1. We assume that
the axis of the waveguide Ω∞ is parallel to the x-axis for (x, y) ∈ R× Rd−1. As a
model problem, we consider the Helmholtz equation with positive wavenumber k
and a wave source f in L2(Ω∞) supported for x > 0,

−∆u− k2u = f in Ω,

∂u

∂ν
= 0 on ∂Ω \ Γ̄0 and

∂u

∂ν
= T (u) on Γ0,

(2.1)
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Fig. 1: Semi-infinite waveguide and non-overlapped decomposition of the domain

where Ω is a Lipschitz bounded domain obtained by truncating Ω∞ at x = 0 with
Γ0 := {0} × Γ and ΓJ := {J} × Γ the cross-sectional boundaries at x = 0 and
x = a, respectively, which can be identified with Γ . Also ν stands for the unit
normal vector pointing outward from the domain and T is the DtN operator for
the radiation condition at infinity.

We assume that k2 is not an eigenvalue of the problem (2.1) and in addition
that there is no cutoff mode for the solvability of local subdomain problems, that
is, if λ2n denotes Neumann eigenvalues ordered increasingly, 0 = λ20 ≤ λ21 ≤ · · · , of
the negative cross-sectional Laplace operator

−∆yYn = λ2nYn in Γ,

∂Yn
∂ν

= 0 on ∂Γ,
(2.2)

then λn 6= k for all n. We take an orthonormal basis {Yn}∞n=0 in L2(Γ ) consisting
of Neumann eigenfunctions and so general solutions to the Helmholtz equation in
the straight waveguide for 0 < x < a can be written as

u(x, y) =
∞∑
n=0

(Ane
iµnx +Bne

−iµnx)Yn(y),

where µn =
√
k2 − λ2n with the branch cut of the negative real axis. Since λn tends

toward infinity as n → ∞, there exists N > 0 (we call it the cutoff index) such
that λn < k for n ≤ N and λn > k for n > N so that µn > 0 for n ≤ N represents
the axial frequency or wavenumber of propagating modes and the imaginary part
µ̃n > 0 of µn = iµ̃n for n > N is the decay rate of evanescent modes. For norm
estimates associated with traces on cross-sectional boundaries identified with Γ ,
we introduce Sobolev spaces Hs(Γ ) for −1 ≤ s ≤ 1 of functions φ =

∑∞
n=0 φnYn

such that

‖φ‖2Hs(Γ ) :=
∞∑
n=0

(1 + λ2n)s|φn|2 <∞.

see e.g., [27]. Here H−s(Γ ) is understood as the dual space of Hs(Γ ) for 0 ≤ s ≤ 1
and we use 〈·, ·〉s,Γ for the duality pairing between Hs(Γ ) and H−s(Γ ) for 0 ≤ s ≤ 1.
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For numerical computations, the exact radiation condition in (2.1) based on
the DtN operator T : H1/2(Γ0)→ H−1/2(Γ0),

T (φ) =
∞∑
n=0

iµnφnYn

for φ =
∑∞
n=0 φnYn in H1/2(Γ0), needs to be replaced by an accurate absorbing

boundary condition such as PML [25], complete radiation boundary condition
(CRBC) [21,26] or rational approximation [11] for the DtN operator. In this paper
we will employ PML not only for absorbing boundary conditions of the global
problem (2.1) but also for transmission conditions of local subdomain problems.

2.2 PML operators TPML

In this section we review basic theories about PML in waveguides (see e.g., [25]).
The PML used for the model problem is defined in terms of a piecewise constant
coordinate stretching function

x̃ =

{
(σr + iσi)x for x < 0,
x for x > 0,

σ =
dx̃

dx
=

{
σ0 = σr + iσi for x < 0,
1 for x > 0

with positive constants σr, σi and is terminated with a homogeneous Neumann
condition on ΓPML = {−β} × Γ , where β is a parameter for the PML width. The
parameters σr and σi are determined in such a way that the smallest decay rate
of converted modes from propagating modes and the smallest decay rate of those
from evanescent modes are balanced,

µNσi = µ̃N+1σr := σµ, (2.3)

which is called the PML strength. These relations determine σ0 =
σµ
µ̃N+1

+ i
σµ
µN

.
The reason that the Neumann condition is used for the terminal condition on
ΓPML instead of the usual homogeneous Dirichlet condition is that PML with the
Neumann condition has the better performance in waveguides than PML with
the Dirichlet condition in case that near-cutoff modes (modes corresponding to
µmin := min{µN , µ̃N+1} � 1) exist, see [26].

Denoting Ω̃ = Ω ∪ Γ0 ∪ ΩPML with ΩPML = (−β, 0) × Γ (see Fig. 1), the
variational problem for the PML Helmholtz equation can be written as finding
ũ ∈ H1(Ω̃) satisfying

b̃(ũ, ṽ) = (f, ṽ)Ω for ṽ ∈ H1(Ω̃), (2.4)

where

b̃(ũ, ṽ) = (H∇ũ,∇ṽ)
Ω̃
− k2(σũ, ṽ)

Ω̃

with H = diag(σ−1, σId−1). Here (·, ·)D is the L2-inner product in the domain D.
On the other hand, the sesquilinear form associated with PML on ΩPML

bPML(u, v) = (
1

σ 0

∂u

∂x
,
∂v

∂x
)ΩPML

+ (σ0∇yu,∇yu)ΩPML
− k2(σ0u, v)ΩPML
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satisfies a coercivity (see [25]) in H̃1
0 (ΩPML), the space of functions in H1(ΩPML)

vanishing on Γ0, which allows us to define a continuous extension operator S :
H1/2(Γ0)→ H1(ΩPML) by S(g) = u, where u is the unique solution to the problem

bPML(u, v) = 0 for v ∈ H̃1
0 (ΩPML) (2.5)

with u = g on Γ0. Then the PML operator TPML : H1/2(Γ0) → H−1/2(Γ0) is

defined as a DtN operator by TPML(g) = − 1
σ0

∂S(g)
∂x for g ∈ H1/2(Γ0). The PML

operator TPML can also be thought of as a variational normal derivative,

〈TPML(g), v〉Γ0
= −bPML(S(g), S(v)) for v ∈ H1/2(Γ0). (2.6)

Now, we consider a problem to find u ∈ H1(Ω) satisfying

b(u, v) = (f, v)Ω for v ∈ H1(Ω), (2.7)

where
b(u, v) = (∇u,∇v)Ω − k2(u, v)Ω − 〈TPML(u), v〉Γ0

. (2.8)

It is also shown in [25] that this problem (2.7) is well-posed and equivalent to the
problem (2.4), that is, the restriction of the solution ũ of the problem (2.4) to Ω

coincides with the solution u to the problem (2.7). Its proof proceeds by using the
fact that TPML is an approximation of T . Indeed, the Fourier analysis yields that
the PML operator TPML can be expressed as

TPML(φ) =
∞∑
n=1

(
iµn

1− e2iσ0µnβ

1 + e2iσ0µnβ

)
φnYn :=

∞∑
n=1

ΛnφnYn (2.9)

and hence the convergence of TPML to T can be proved in the sense that there
exists a positive constant M such that for σµβ > M

‖(T − TPML)(φ)‖H−1/2(Γ0)
. e−2σµβ‖φ‖H1/2(Γ0)

.

From here on, we will use a . b for a ≤ Cb with a generic constant C that may
depend on Ω and k but is independent of PML parameters and the number of
subdomains of the double sweep DDM as well as functions involved in estimates.

Remark 2.1 The PML of width β and complex coordinate stretching constant σ0
can be applied to any cross-sectional boundary identical with Γ not only on Γ0. In

addition, we will use it for transmission conditions on cross-sectional interfaces between

subdomains throughout the paper. Also we can use PML with different parameters β and

σ0 for different interfaces, however we will take one PML for a simple presentation.

Remark 2.2 Although PML with a piecewise constant coordinate stretching function

is used in this paper for absorbing and transmission conditions of the double sweep

DDM, there are many other types of PML coordinate stretching functions such as

piecewise polynomials [5,7,12,28,36] and unbounded functions [3,42]. In particular, it

is shown in [36] that PML equipped with a piecewise quadratic polynomial stretching

function normalized with respect to k and PML width is utilized for an efficient trans-

mission condition of the double sweep DDM. It turns out that PML of a piecewise

quadratic polynomial stretching function gives a better performance than the piecewise

constant counterpart, however the convergence analysis for the double sweep DDM with

PML of the quadratic stretching function is much more difficult in the discrete level

and we leave it for the future research.
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3 Double sweep for the continuous problem

The domain Ω is decomposed non-overlappingly in one-way along the axis of the
waveguide, the x-axis for (x, y) ∈ R×Rd−1, Ω = ∪Jj=1Ωj with

Ωj = (xj−1, xj)× Γ for j = 1, . . . , J.

Here 0 = x0 < x1 < . . . < xJ−1 < a = xJ . See Fig. 1. For a simple presentation,
we assume that xj are evenly spaced so that H := xj − xj−1 is constant. We
denote interfaces between two neighboring subdomains by Γj = {xj} × Γ for j =
1, 2, . . . , J − 1.

We note that if uex is the solution to the problem (2.7), then the restriction
uexj = uex|Ωj is the unique solution to the local subdomain problem

−∆uexj − k
2uexj = fj in Ωj , (3.1)(

∂

∂νj
− TPML

)
uexj =

(
∂

∂νj
− TPML

)
uexj−1 on Γj−1, (3.2)(

∂

∂νj
− TPML

)
uexj =

(
∂

∂νj
− TPML

)
uexj+1 on Γj (3.3)

with a homogeneous Neumann condition imposed on boundaries other than Γj
with j = 1, . . . , J , where νj stands for the outward unit normal vector on ∂Ωj
and fj is the restriction of f to Ωj . The right-hand-side of (3.2) for j = 1 is
set to be zero, and the transmission condition (3.3) for j = J is replaced with a
homogeneous Neumann condition on ΓJ . The local subdomain problem can also
be written as a variational form,

bj(u
ex
j , v) = (fj , v)Ωj + 〈γLj , v〉Γj−1

+ 〈γRj , v〉Γj for all v ∈ VΩj := H1(Ωj), (3.4)

where bj(·, ·) is the sesquilinear form in VΩj × VΩj analogous to (2.8) defined by

bj(u, v) = (∇u,∇v)Ωj − k
2(u, v)Ωj − 〈TPML(u), v〉Γj−1∪Γj for u, v ∈ VΩj

and

γLj =

(
∂

∂νj
− TPML

)
uexj−1, γRj =

(
∂

∂νj
− TPML

)
uexj+1 (3.5)

for j = 1, . . . , J with the obvious modifications for j = 1 and j = J . It is shown
in [25] that for any fj ∈ L2(Ωj) and any γLj ∈ H

−1/2(Γj−1), γRj ∈ H
−1/2(Γj) the

problem (3.4) has a unique solution uj ∈ H1(Ωj) satisfying

‖uj‖H1(Ωj) . ‖fj‖L2(Ωj) + ‖γLj ‖H−1/2(Γj−1)
+ ‖γRj ‖H−1/2(Γj)

.

Since the boundary data (3.5) are unknown in seeking for the solution uex in
practice, an iterative method by using approximate data obtained from previous
iterates in neighboring subdomains can be a reasonable alternative, which leads
to the double sweeping iterative solver introduced in [19]. The formulations in this
paper for the double sweep iteration are the same as those in [19] and we provide
a convergence analysis for the double sweep DDM in both continuous and discrete
levels.
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For the convergence analysis in the continuous level, we let V =
∏J
j=1 VΩj

equipped with the norm

‖u‖V =

 J∑
j=1

‖uj‖2H1(Ωj)

1/2

for u = (u1, u2, . . . , uJ ) ∈ V. The double sweep DDM yields an approximation
u = (u1, u2, . . . , uJ ) in V to the solution uex = (uex1 , uex2 , . . . , uexJ ).

3.1 Algorithm

To obtain an approximation to uex, with any initial iterate u0 = (u01, . . . , u
0
J ) ∈ V

such that
∂u0

j

∂νj
∈ H−1/2(Γj−1 ∪ Γj), we find the m-th iterate um for m = 1, 2, . . .

by solving sequentially subdomain problems in Ωj from j = 1 to j = J − 1 in the
forward sweep and then solving subdomain problems from j = J to j = 1 in the
backward sweep. In solving each local subdomain problem involved in the forward
and backward sweeps, we take three steps as follows: for a current iterate u ∈ V

1. Extract data γLj and γRj coming into Ωj from u.
2. Solve the local problem for φj ∈ VΩj satisfying

bj(φj , v) = (fj , v)Ωj + 〈γLj , v〉Γj−1
+ 〈γRj , v〉Γj for all v ∈ VΩj . (3.6)

3. Update the j-th component of u with φj .

Remark 3.1 When we extract the incoming data, we observe that

(1) At the beginning of the forward sweep in the (m+ 1)-th iteration, all γR,mj for j =
1, 2, . . . , J−1 that will be used for the forward sweep can be computed from um. Thus

we can denote the boundary data coming into each subdomain from the right used

for the forward sweep in the (m+1)-th iteration by γR,m = (γR,m1 , γR,m2 , . . . , γR,mJ−1)

in GR :=
∏J−1
j=1 H

−1/2(Γj) without solving intermediate problems of the forward

sweep. However, γL,mj is updated immediately after the local problem in Ωj−1 is

solved in the forward sweep.

(2) Denoting the intermediate iterate by um+1/2 after finishing the forward sweep of

the (m+1)-th iteration, all γL,mj for j = 2, . . . , J that will be used for the backward

sweep can be computed from um+1/2. Thus we can denote the boundary data coming

into each subdomain from the left used for the backward sweep in the (m + 1)-th

iteration by γL,m = (γL,m2 , γL,m3 , . . . , γL,mJ ) in GL :=
∏J
j=2H

−1/2(Γj) without

solving intermediate problems of the backward sweep. However, γR,m+1
j is updated

immediately after the local problem in Ωj+1 is solved in the backward sweep.

(3) From (1), we can view the forward sweep of the (m+ 1)-th iteration as a mapping

F : γR,m 7→ γL,m. Also, from (2), the backward sweep of the (m+ 1)-th iteration

can be regarded as a mapping B : γL,m 7→ γR,m+1. See the following diagram of the

(m+ 1)-th iteration, where E stands for extraction of incoming data. In addition,
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um+1/2 can be computed from γL,m and γR,m along the dashed arrows in the left

part of the diagram. Similarly, um+1 can be computed from γL,m and γR,m+1.

um um+1/2 um+1

γR,m γL,m γR,m+1

forward sweep

E

backward sweep

E E

F B

(4) The data γL,mj used for the problem in Ωj in the forward sweep (2 ≤ j ≤ J − 1) is

used again for the problem in Ωj in the backward sweep of the same iteration.

(5) The data γR,m+1
j used for the problem in Ωj in the backward sweep (1 ≤ j ≤ J−1)

is used again for the problem in Ωj in the forward sweep of the next iteration.

The algorithm of the double sweep DDM for the continuous level is presented
in Algorithm 1 with the unnecessary fractional index m+1/2 removed, i.e., um+1/2

after the forward sweep is considered as um+1 in the middle of (m+1)-th iteration.
Since the first subdomain problem in Ω1 of the forward sweep in the next iteration
is also considered as the last subdomain problem of the backward sweep in the
current iteration, every subdomain problem in Ωj needs to be solved twice except
in Ω1 and ΩJ during one double sweep. Thus, one iteration of the double sweep
DDM requires 2(J − 1) local subdomain problems in the actual practice.

Since it is essential to understand how the data γL,mj and γR,mj coming into Ωj
are transferred to neighboring subdomains Ωj±1 after solving the local problem
in Ωj , we will investigate a transmission problem in a reference domain identical
with Ωj in the next subsection.

Algorithm 1 Double Sweep DDM for the continuous level problem

1: Choose any initial iterate u0 = (u01, u
0
2, . . . , u

0
J ) satisfying the regularity

∂u0j

∂νj

∣∣∣∣∣
Γj−1

∈ H−1/2(Γj−1) and
∂u0j

∂νj

∣∣∣∣∣
Γj

∈ H−1/2(Γj). (3.7)

2: Compute γR,0 = (γR,01 , . . . , γR,0J−1) from u0.
3: Set m = 0.
4: while the residual is larger than given tolerance do
5: Set um+1 ← um. . Forward sweep
6: for j = 1, . . . , J − 1 do

7: i.iiCompute γL,mj from um+1
j−1 with γL,m1 = 0.

8: ii.iSolve the local problem (3.6) with γLj = γL,mj and γRj = γR,mj for φj ∈ VΩj .

9: iii.Update the j-th component um+1
j of um+1 by using φj .

10: end for
11: Compute γL,mJ from um+1

J−1 . . Backward sweep
12: for j = J, J − 1, . . . , 1 do

13: i.iiCompute γR,m+1
j from um+1

j+1 with γR,m+1
J being ignored.

14: ii.iSolve the local problem (3.6) with γLj = γL,mj and γRj = γR,m+1
j for φj ∈ VΩj .

15: iii.Update the j-th component um+1
j of um+1 by using φj .

16: end for
17: Set m← m+ 1.
18: end while
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3.2 Subdomain transmission problem

Let Ω̂ be a reference waveguide Ω̂ = (L,R) × Γ of width H = R − L > 0 with
boundaries ΓL = {L} × Γ and ΓR = {R} × Γ . We consider the wave propagation
problem to find u ∈ H1(Ω̂) satisfying

∆u+ k2u = 0 in Ω̂, (3.8)

∂u

∂ν
= TPML(u) + γLin on ΓL,

∂u

∂ν
= TPML(u) + γRin on ΓR (3.9)

together with ∂u/∂ν = 0 on ∂Ω̂ \ΓL ∪ ΓR, where γLin =
∑∞
n=1 γ

L
in,nYn ∈ H−1/2(ΓL)

and γRin =
∑∞
n=1 γ

R
in,nYn ∈ H−1/2(ΓR) are two input data coming into the domain

Ω̂ through the boundaries ΓL ∪ ΓR. Once solving the problem, we will find the
outgoing data γLout and γRout of the solution u,

γLout := −∂u
∂ν
− TPML(u) on ΓL and γRout := −∂u

∂ν
− TPML(u) on ΓR. (3.10)

We recall that the PML operator TPML : H1/2(Γ ) → H−1/2(Γ ) is defined by
(2.9) with the identification between Γ and ΓL/R. The reflection coefficient of the
n-th mode associated with the PML operator is given by

Qn =
iµn − Λn
−iµn − Λn

= e2iµnσ0β ,

which is bounded by

|Qn| ≤ e−2σµβ for all n = 0, 1, . . . (3.11)

due to (2.3). Here we assume that the PML parameters σµ and β are chosen so
that e−2σµβ < 1/2.

We begin by examining the coefficient of the n-th mode of the solution u to
the problem (3.8)-(3.9), written as

un = Ane
iµnx +Bne

−iµnx.

Two boundary conditions (3.9) lead to

(−iµn − Λn)eiµnLAn + (iµn − Λn)e−iµnLBn = γLin,n on ΓL,

(iµn − Λn)eiµnRAn + (−iµn − Λn)e−iµnRBn = γRin,n on ΓR.

The solution to the linear system is given by[
An
Bn

]
=

eiµnH

(1−Q2
ne2iµnH)(−iµn − Λn)

[
e−iµnR −Qne−iµnL

−QneiµnR eiµnL

] [
γLin,n
γRin,n

]
.

From (3.10) it can be obtained by a straightforward computation that[
γLout,n
γRout,n

]
=

[
εn ζn
ζn εn

] [
γLin,n
γRin,n

]
, (3.12)

where

ζn =
(1−Q2

n)eiµnH

1−Q2
ne2iµnH

, εn =
(1− e2iµnHn )Qn
1−Q2

ne2iµnH
.
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According to the formula (3.12), εn and ζn can be interpreted as the coefficients
that measure how much of the incident fields coming through one side boundary
are reflected back out to the same side boundary and are propagating out to the
other side boundary, respectively. Also, it is seen that εn is asymptotically bounded
by the reflection coefficient Qn. On the other hand, ζn represents the phase change
approximately of eiµnH for propagation modes and shows the amount of decay for
evanescent modes while the modes are traveling from one side to the other.

Lemma 3.2 It holds that
|εn| < 3e−2σµβ ,

|ζn| < 1 + 3e−4σµβ .
(3.13)

Proof Using (3.11) and noting that |eiµnH | ≤ 1, we prove that

|εn| =
∣∣∣∣ (1− e2iµnH)Qn

1−Q2
ne2iµnH

∣∣∣∣ ≤ 2

1− e−4σµβ
e−2σµβ < 3e−2σµβ ,

|ζn| =
∣∣∣∣ (1−Q2

n)eiµnH

1−Q2
ne2iµnH

∣∣∣∣ ≤ 1 + e−4σµβ

1− e−4σµβ
< 1 + 3e−4σµβ ,

which yields the required inequalities (3.13). ut

Lemma 3.3 Let u be the solution to the problem (3.8)-(3.9) with γLin ∈ H−1/2(ΓL)
and γRin ∈ H−1/2(ΓR). Then for σµ and β such that e−2σµβ < 1/2, the outgoing data

defined by (3.10) satisfy

‖γLout‖H−1/2(ΓL)
≤ 3e−2σµβ‖γLin‖H−1/2(ΓL)

+ (1 + 3e−4σµβ)‖γRin‖H−1/2(ΓR),

‖γRout‖H−1/2(ΓR) ≤ (1 + 3e−4σµβ)‖γLin‖H−1/2(ΓL)
+ 3e−2σµβ‖γRin‖H−1/2(ΓR).

(3.14)

Proof Invoking (3.12) and Lemma 3.2, we can show that

|γLout,n| ≤ 3e−2σµβ |γLin,n|+ (1 + 3e−4σµβ)|γRin,n|,

|γRout,n| ≤ (1 + 3e−4σµβ)|γLin,n|+ 3e−2σµβ |γRin,n|.

By using the triangle inequality of the norm in H−1/2(Γ ) we are led to the esti-
mates (3.14) for γLout and γRout. ut

3.3 Convergence of the continuous double sweep DDM

As seen in Remark 3.1 (3) the forward sweep process can be viewed as an operator
F : GR → GL defined by F(γR,m) = γL,m, and the backward sweep process can
be interpreted as an operator B : GL → GR defined by B(γL,m) = γR,m+1. There-
fore, the double sweep process can be thought of a linear operator from the right
boundary data γR,m of the m-th iteration to the right boundary data γR,m+1 of
the (m+ 1)-th iteration. For convergence of the error functions um − uex, assum-
ing that fj = 0 by linearity of the problem, we have only to show that B ◦ F is a
contraction in GR.

We first estimate the forward sweep operator F by using Lemma 3.3 repeatedly
from Ω1 to ΩJ−1.
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Lemma 3.4 Let c0 < 1/2 be a positive constant such that (6c20 + 9c40)(J − 1) < 1.

If the PML parameters are chosen such that e−2σµβ < c0, then the forward sweep

operator F mapping from γR,m to γL,m satisfies the estimate

‖γL,m‖H−1/2(Γ ) . (J − 1)e−2σµβ‖γR,m‖H−1/2(Γ ). (3.15)

In particular,

‖γL,mJ ‖H−1/2(ΓJ−1)
.
√
J − 1e−2σµβ‖γR,m‖H−1/2(Γ ). (3.16)

Proof For the notational simplicity, we denote ε = e−2σµβ . We begin with an
estimation of γL,m2 by applying Lemma 3.3 to the subdomain Ω1 with γL,m1 = 0,
which shows

‖γL,m2 ‖H−1/2(Γ1)
≤ 3ε‖γR,m1 ‖H−1/2(Γ1)

.

For j = 3, 4, . . . , J , Lemma 3.3 leads us to

‖γL,mj ‖H−1/2(Γj−1)
≤ 3ε‖γR,mj−1 ‖H−1/2(Γj−1)

+ (1 + 3ε2)‖γL,mj−1 ‖H−1/2(Γj−2)
.

The inductive argument for increasing j yields that

‖γL,mj ‖H−1/2(Γj−1)
≤ 3ε

j−1∑
i=1

(1 + 3ε2)j−i−1‖γR,mi ‖H−1/2(Γi)
. (3.17)

Thus, each γL,mj for j = 2, . . . , J can be bounded by

‖γL,mj ‖2H−1/2(Γj−1)
≤ (3ε)2

J−1∑
i=1

(1 + 3ε2)2(i−1)‖γR,m‖2H−1/2(Γ ) (3.18)

due to the Cauchy-Schwarz inequality. Noting that (1+3ε2)2(J−1) < e(6ε
2+9ε4)(J−1),

one can easily show that for (6ε2 + 9ε4)(J − 1) < 1

J−1∑
i=1

(1 + 3ε2)2(i−1) ≤ e(6ε
2+9ε4)(J−1) − 1

6ε2 + 9ε4
< 2(J − 1). (3.19)

Combining (3.18) and (3.19) shows that for j = 2, . . . , J

‖γL,mj ‖2H−1/2(ΓJ−1)
. ε2(J − 1)‖γR,m‖2H−1/2(Γ ). (3.20)

Adding up (3.20) for j = 2, . . . , J gives us (3.15). Also, (3.16) is the result from
(3.20) with j = J , which completes the proof. ut

If we denote the forward sweep operator for the n-th mode by Fn, then we find
that Fn is a lower triangular Toeplitz matrix by using (3.12) repeatedly from Ω1

to ΩJ−1, i.e., Fn = εnΞn, where

Ξn =


1
ζn 1
ζ2n ζn 1
...

...
. . .

. . .

ζJ−2
n ζJ−3

n . . . ζn 1

 . (3.21)
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Since |ζn| ≈ 1 for propagating modes, the norm of Ξn is of order O(J − 1) and
hence the dependence of the stability constant on J appears to be inevitable.

The backward sweep operator B can be estimated in the similar fashion as
done for the forward sweep operator F but with only a special care for the cavity
ΩJ .

Lemma 3.5 Let c0 < 1/2 be a positive constant such that (6c20 + 9c40)(J − 1) < 1.

If the PML parameters are chosen such that e−2σµβ < c0, then the backward sweep

operator B mapping from γL,m to γR,m+1 satisfies the estimate

‖γR,m+1‖H−1/2(Γ ) . (J − 1)e−2σµβ‖γL,m‖H−1/2(Γ ) +
√
J − 1‖γL,mJ ‖H−1/2(ΓJ−1)

.

(3.22)

Proof Let ε = e−2σµβ . We first note that the solution umJ ∈ VJ to the problem in
ΩJ satisfies

‖umJ ‖H1(ΩJ ) . ‖γ
L,m
J ‖H−1/2(ΓJ−1)

.

By a standard trace estimate with the stability of the solution we have

‖γR,m+1
J−1 ‖H−1/2(ΓJ−1)

= ‖∂u
m
J

∂νJ
+ TPML(umJ )‖H−1/2(ΓJ−1)

. ‖γL,mJ ‖H−1/2(ΓJ−1)
.

(3.23)
Noting that

‖γR,m+1
j ‖H−1/2(Γj)

≤ 3ε‖γL,mj+1 ‖H−1/2(Γj)
+ (1 + 3ε2)‖γR,m+1

j+1 ‖H−1/2(Γj+1)

resulting from Lemma 3.3 applied to the subdomain Ωj+1 for j = 1, . . . , J − 2, the
inductive argument for decreasing j from j = J − 2 to j = 1 shows

‖γR,m+1
j ‖H−1/2(Γj)

≤ 3ε

 J−1∑
i=j+1

(1 + 3ε2)i−j−1‖γL,mi ‖H−1/2(Γi−1)


+ (1 + 3ε2)J−j−1‖γR,m+1

J−1 ‖H−1/2(ΓJ−1)
.

By the Cauchy-Schwarz inequality we can have

‖γR,m+1
j ‖2H−1/2(Γj)

≤ C
(

(3ε)2
J−1∑
i=j+1

(1 + 3ε2)2(i−j−1)‖γL,m‖2H−1/2(Γ )

+ (1 + 3ε2)2(J−j−1)‖γR,m+1
J−1 ‖2H−1/2(ΓJ−1)

)
.

(3.24)

Since the condition (6ε2 + 9ε4)(J − 1) < 1 implies

(1 + 3ε2)2(J−j−1) < (1 + 6ε2 + 9ε4)J−1 < e(6ε
2+9ε4)(J−1) < e,

invoking the same estimate as (3.19) in the forward sweep, we can show that

‖γR,m+1
j ‖2H−1/2(Γj)

. ε2(J − 1)‖γL,m‖2H−1/2(Γ ) + ‖γR,m+1
J−1 ‖2H−1/2(ΓJ−1)

(3.25)

Finally, (3.22) results from adding all (3.25) for j = 1, . . . , J −1 and then applying
(3.23). ut
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Now, we are in a position to show that the double sweep operator B ◦ F is a
contraction for sufficiently small e−2σµβ .

Lemma 3.6 Let c0 be a positive constant such that c0(J − 1) < 1 as well as (6c20 +
9c40)(J − 1) < 1. If the PML parameters are chosen such that e−2σµβ < c0, then the

double sweep operator B ◦ F mapping from γR,m to γR,m+1 satisfies the estimate

‖γR,m+1‖H−1/2(Γ ) ≤ CB◦F(J − 1)e−2σµβ‖γR,m‖H−1/2(Γ )

for some positive constant CB◦F that may depend only on k and ΩJ .

Proof Let ε = e−2σµβ . We use Lemma 3.4 and Lemma 3.5 to show that

‖γR,m+1‖2H−1/2(Γ ) . ε2(J − 1)2‖γL,m‖2H−1/2(Γ ) + (J − 1)‖γL,mJ ‖2H−1/2(ΓJ−1)

. (ε2(J − 1)2 + 1)ε2(J − 1)2‖γR,m‖2H−1/2(Γ ).

Since ε2(J − 1)2 < 1, the desired estimate is achieved. ut

Remark 3.7 If ΩJ is also open to the right, then the constant CB◦F becomes a generic

constant independent of k and ΩJ according to the proof of Lemma 3.5 and Lemma 3.6.

Theorem 3.8 Suppose that f = 0. Let um ∈ V be the m-th iterate of the double

sweep DDM for any u0 satisfying (3.7). Assume that c0 < 1/2 is a positive constant

satisfying c0(J − 1) < 1 as well as (6c20 + 9c40)(J − 1) < 1. If the PML parameters are

chosen such that e−2σµβ < c0, then it holds that

‖um‖V . (CB◦F(J − 1)e−2σµβ)m‖u0‖V.

Proof Since them-th iterate um is determined by γR,m and γL,m−1, by the stability
of local problems we have

‖um‖V . ‖γR,m‖H−1/2(Γ ) + ‖γL,m−1‖H−1/2(Γ ),

which can be in turn by Lemma 3.4 and Lemma 3.6

‖um‖V . CB◦F(J − 1)e−2σµβ‖γR,m−1‖H−1/2(Γ ).

Finally, Lemma 3.6 and a trace inequality reveal that

‖um‖V . (CB◦F(J − 1)e−2σµβ)m‖γR,0‖H−1/2(Γ )

. (CB◦F(J − 1)e−2σµβ)m‖u0‖V,

which completes the proof. ut

As a consequence, the double sweep DDM converges if we apply PML such
that CB◦F(J − 1)e−2σµβ < 1.
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4 Analysis of the finite element subdomain transmission problem

In this section we study the finite element transmission problem on the reference
domain Ω̂ that will be used to analyze the convergence of the double sweep DDM
applied to the Helmholtz equation discretized by the finite element method.

We first introduce the finite element spaces on the whole domain Ω̃ and on
the reference domain Ω̂. Let h = H/Ns = β/Np for positive integers Ns and
Np. We define a quasi-uniform and shape-regular interval/quadrilateral mesh TΓ
of maximal diameter h on Γ and identify the triangulation TΓj on Γj with TΓ .
We introduce quasi-uniform and shape-regular quadrilateral/hexahedral meshes
TΩj and TΩPML

of subdomains Ωj and ΩPML, respectively, which is obtained by
starting with the triangulation of TΓj and extruding elements in TΓj by every h

along the axis of the waveguide. Thus, the common interface Γj of Ωj and Ωj+1 for
j = 1, . . . , J − 1 has the same face triangulation TΓj inherited from Ωj and Ωj+1.

Let TΩ = ∪Jj=1TΩj for the finite element mesh of Ω and T
Ω̃

= TΩ ∪ TΩPML
for that

of Ω̃. By V h
Ω̃

, V hΩ , V hΩj and V hΩPML
we denote finite element spaces of continuous

piecewise bilinear/trilinear functions defined in Ω̃, Ω, Ωj and ΩPML corresponding

to their triangulations, respectively. V hΓj is the finite element space induced by the

trace of functions in V hΩj and V hΓ can be defined by its identification with V hΓj . We

can also define TΩ̂ , TΓL
, TΓR

and V h
Ω̂

, V hΓL
, V hΓR

, analogously.

4.1 Solution representation in Ω̂

The interval (L,R) is decomposed into the Ns numbers of uniform subintervals

L = a0 < a1 < . . . < aNs = R, aq − aq−1 =
H

Ns
= h for q = 1, . . . , Ns.

Then the triangulations at {aq}×Γ are all identical for q = 0, . . . , Ns. We will use
VhΓ,q for the finite element spaces of continuous piecewise bilinear/trilinear finite

element functions vanishing on all nodes outside of {aq}×Γ as a subspace of V h
Ω̂

. Let

NΓ denote the dimension of VhΓ,q. Note that VhΓ,q is different from the finite element

space V hΓj on the interface Γj , although they have the same dimension. We see that

every function uh in the finite element space V h
Ω̂

of dimension NΓ × (Ns + 1) can

be written uniquely as uh =
∑Ns
q=0 uh,q with uh,q ∈ VhΓ,q. With the same ordering

of the nodal finite element basis functions in every VhΓ,q, we denote by ûh,q the
coordinate representation of uh,q with respect to the nodal finite element basis.

Then ûh = (ûh,0, . . . , ûh,Ns) is the corresponding vector in CNΓ×(Ns+1) for uh.

Let us first consider the finite element approximation to the eigenvalue problem
(2.2) on the cross-section Γ . Denoting the finite element approximations to the
eigenvalue problem (2.2) by (φh,`, λ

2
h,`) ∈ V

h
Γ × R for ` = 1, 2, . . . , NΓ with NΓ =

dim(V hΓ ), the coordinate representations φ̂h,` ∈ RNΓ of φh,` with respect to the
nodal finite element basis functions are solutions to the eigenvalue problem in a
finite dimensional space

SΓ φ̂h,` = λ2h,`MΓ φ̂h,`, (4.1)



Double sweep DDM 17

where SΓ and MΓ are the NΓ ×NΓ stiffness and mass matrices, respectively. We
assume that eigenvalues are ordered increasingly,

λh,1 ≤ λh,2 ≤ . . . ≤ λh,NΓ .

Here we note that λh,` ≥ 0 and the largest eigenvalue λ2h,NΓ = O(h−2) by the

inverse inequality so that there exists a positive constant Cλ such that λ2h,`h
2 ≤

C2
λ. Also, we can choose the eigenvectors φ̂h,` of (4.1), which are orthonormal

with respect to the MΓ -inner product defined by (x, y)MΓ
:= (MΓ x, y) for x, y ∈

CNΓ . Due to the interpolation theory [1,4,31], it can be shown that the discrete
fractional order norm defined by

‖wh‖2Ḣsh(Γ )
:=

NΓ∑
`=1

(1 + λ2h,`)
s|wh` |

2

for wh ∈ V hΓ and −1 ≤ s ≤ 1, is equivalent to the continuous fractional order
norm, where wh` = (wh, φh,`)Γ , that is, there exist positive constants C1 and C2

independent of h such that

C1‖wh‖Hs(Γ ) ≤ ‖wh‖Ḣsh(Γ ) ≤ C2‖wh‖Hs(Γ ) (4.2)

for wh ∈ V hΓ .
Now, for given γLh ∈ V

h
ΓL

and γRh ∈ V
h
ΓR

consider the problem to find uh ∈ V hΩ̂
such that

bh
Ω̂

(uh, vh) = (γLh , vh)ΓL
+ (γRh , vh)ΓR

for all vh ∈ V hΩ̂ , (4.3)

where

bh
Ω̂

(uh, vh) = aΩ̂(uh, vh)− (ThPML(uh), vh)ΓL∪ΓR
. (4.4)

with

aΩ̂(uh, vh) = (∇uh,∇vh)Ω̂ − k
2(uh, vh)Ω̂ . (4.5)

Here ThPML is the discrete PML operator, that will be discussed in Subsection 4.3.
We will consider bhj (·, ·) = bh

Ω̂
(·, ·) and aj(·, ·) = aΩ̂(·, ·) with Ω̂ = Ωj in dealing

with the local subdomain problems later. In this case, the system matrix for the
sesquilinear form bh

Ω̂
(·, ·) can be written as the block tridiagonal matrix

A− T̂hPML −B
−B 2A −B

. . .
. . .

. . .

−B 2A −B
−B A− T̂hPML

 (4.6)

where A in the diagonal blocks is an NΓ×NΓ matrix related with interaction of two
basis functions supported on the same cross-section whereas B in the off-diagonal
blocks is one that results from two basis functions supported on two different
neighboring cross-sections. T̂hPML stands for the matrix corresponding to the dis-
crete PML operator ThPML, which also will be studied in Subsection 4.3 together
with ThPML. By splitting the matrices A and B into three parts corresponding to
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each term in (4.5), A = Ax +Ay − k2A0 and B = Bx +By − k2B0, respectively, we
obtain that

A =
h

3
SΓ + (

1

h
− hk2

3
)MΓ , B =

−h
6
SΓ + (

1

h
+
hk2

6
)MΓ . (4.7)

Indeed, noting that bilinear/trilinear functions are obtained by tensor products,
it can be shown that

Ax =
1

h
MΓ , Ay =

h

3
SΓ , A0 =

h

3
MΓ ,

Bx =
1

h
MΓ , By =

−h
6
SΓ , B0 =

−h
6
MΓ .

(4.8)

Assuming that the mesh size h satisfies h < 1/(%k) with mesh density % ≥ 2 so
that there exist a certain amount of grid points per wavelength for resolving wave
phenomena properly, the positivity of λ2h,` ≥ 0 yields that

h2µ2h,` ≤ h
2k2 ≤ 1

%2
, (4.9)

where µh,` =
√
k2 − λ2h,`.

Now, the invertibility of the matrices A and B is discussed in the following
lemma. To do this, let JB be a set of indices ` such that 1 + h2µ2h,`/6 = 0.

Lemma 4.1 The matrix A is invertible. If JB = ∅, then the matrix B is invertible

as well. If JB 6= ∅, then eigenvectors φ̂h,` for ` ∈ JB generate the null space of B.

Proof The formula (4.7) implies that

Aφ̂h,` =
1

h

(
1−

h2µ2h,`
3

)
MΓ φ̂h,`, (4.10)

Bφ̂h,` =
1

h

(
1 +

h2µ2h,`
6

)
MΓ φ̂h,`. (4.11)

Noting that {φ̂h,`}NΓ`=1 forms a basis in CNΓ , since 1 − h2µ2h,`/3 6= 0 due to (4.9)
and MΓ is invertible, the matrix A maps a basis to another basis, which implies
that A is invertible. Similarly, if JB = ∅, by the same argument as above, B is
invertible. When JB 6= ∅, (4.11) yields that Bφ̂h,` = 0 for ` ∈ JB and the vectors

Bφ̂h,` for ` /∈ JB are linearly independent, which completes the proof. ut

Lemma 4.2 If ` /∈ JB, then φ̂h,` is an eigenvector of the generalized eigenvalue prob-

lem

Aφ̂ = ηBφ̂ (4.12)

for an eigenvalue

ηh,` =

(
1−

h2µ2h,`
3

)(
1 +

h2µ2h,`
6

)−1

.

Proof It follows from (4.10) and (4.11). ut
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In order to study solutions to the problem (4.3), which satisfy three term
recurrence

−Bûh,q−1 + 2Aûh,q −Bûh,q+1 = 0 for q = 1, 2, . . . , Ns − 1, (4.13)

we examine solutions to the characteristic equation ξ2 − 2ηh,`ξ + 1 = 0 for each
ηh,`, ` /∈ JB . The eigenvalue ηh,` is real and its absolute value is classified into
three possible cases:
1 For |ηh,`| = 1, the characteristic equation has a multiple root, however this can

not occur for sufficiently small h > 0. Indeed, |ηh,`| = 1 if and only if h2µ2h,` = 0

or 12. The condition (4.9) for the mesh resolution gives h2µ2h,` 6= 12. In addition,
the assumption excluding cutoff modes with sufficiently small h guarantees that
µ2h,` = k2 − λ2h,` 6= 0, which results in h2µ2h,` 6= 0.

2 |ηh,`| < 1 if and only if 0 < h2µ2h,` < 12. By the assumption (4.9) saying that

h2µ2h,` < 1/%2 < 1 for all ` = 1, 2, . . . , NΓ , we have only 0 < ηh,` < 1 and in this
case the solution ξh,` with =(ξh,`) > 0 of the characteristic equation can be written
as

ξh,` = ηh,` + i
√

1− η2h,` = eihµ
∗
h,` if 0 < h2µ2h,` < 1/%2 (0 < ηh,` < 1) (4.14)

for some µ∗h,` > 0. We note that the condition µ2h,` > 0 corresponds to that for
propagating modes of the continuous problem and in fact, these modes represent
discrete propagating modes approximating continuous propagating modes. For
such µh,` with 0 < hµh,` < 1/%, ηh,` is a Padé approximation to cos(hµh,`),

ηh,` =

(
1−

h2µ2h,`
3

)(
1 +

h2µ2h,`
6

)−1

= 1−
h2µ2h,`

2
+O((hµh,`)

4)

and hence ξh,` is an approximation of eiµnh for a propagation mode at x = h,

ξh,` = eihµ
∗
h,` ≈ eihµh,` ≈ eihµn

for some µn > 0, a wavenumber of a propagating mode. Thus, we call µh,` and µ∗h,`
the discrete wavenumber and the numerical wavenumber of the `-th mode, respec-
tively, corresponding to the continuous wavenumber µn of the n-th propagating
mode. It is known that the discrepancy between µ∗h,` and µn is the main source for
the pollution error in finite element approximations for wave propagation problems
[22,23,24].

3 |ηh,`| > 1 if and only if h2µ2h,` < 0 or h2µ2h,` > 12. By the assumption on

the mesh resolution, we have only h2µ2h,` < 0. It is equivalent to the condition

that µ2h,` < 0, which is the same condition as that for evanescent modes of the
continuous problem. In this case, we choose

ξh,` =

 ηh,` −
√
η2h,` − 1 if − 6 < h2µ2h,` < 0 (ηh,` > 1),

ηh,` +
√
η2h,` − 1 if h2µ2h,` < −6 (ηh,` < −2)

(4.15)

satisfying |ξh,`| < 1. See the plot of |ξ| as a function of x = (hµ)2 < 0 in Fig. 2.
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Fig. 2: Plot of |ξ| as a function of x = (hµ)2 < 0 for evanescent modes. Here
limx→−∞ |ξ(x)| = 2−

√
3 and |ξ(−12)| = 5−

√
24. The green vertical line represents

the lower bound −12 of x in two dimensional problem as the cross-sectional discrete
Neumann eigenvalues for Γ = (0, 1) are λ2h,` = 12h−2 sin2( `π

2NΓ
)/(1 + 2 cos2( `π

2NΓ
))

and hence (hµh,NΓ )2 = h2k2 − h2λ2h,NΓ ≥ −12.

Lemma 4.3 Suppose that −Bûh,q−1+2Aûh,q−Bûh,q+1 = 0 for q = 1, 2, . . . , Ns−1.

Then ûh,q for q = 0, 1, . . . , Ns is of the form

ûh,q =
∑
`/∈JB

(α`ξ
q
h,` + β`ξ

−q
h,`)φ̂h,` + (δ0,q + δNs,q)

∑
`∈JB

rq,`φ̂h,` (4.16)

for constants α`, β` and r0,`, rNs,`, where δ`,q is the Kronecker delta and ξh,` is the

solution to the characteristic equation ξ2 − 2ηh,`ξ + 1 = 0 given by (4.14) or (4.15)
depending on ηh,`.

Proof We first consider the case that JB = ∅, that is, B is invertible. In this case,
ûh,q satisfies

L

[
ûh,q
ûh,q−1

]
:=

[
2B−1A −I

I 0

] [
ûh,q
ûh,q−1

]
=

[
ûh,q+1

ûh,q

]
,

from which we see that[
ûh,q+1

ûh,q

]
= Lq

[
ûh,1
ûh,0

]
for q = 0, 1, . . . , Ns − 1. (4.17)

Since it holds that

L

[
ξ±1
h,`φ̂h,`

φ̂h,`

]
=

[
(2ηh,`ξ

±1
h,` − 1)φ̂h,`

ξ±1
h,`φ̂h,`

]
= ξ±1

h,`

[
ξ±1
h,`φ̂h,`

φ̂h,`

]
,

{[
ξh,`φ̂h,`
φ̂h,`

]
,

[
ξ−1
h,`φ̂h,`

φ̂h,`

]}NΓ
`=1

is a basis consisting of eigenvectors of L for eigenval-

ues {ξh,`, ξ−1
h,`}

NΓ
`=1. Therefore,

[
ûh,1
ûh,0

]
can be written as a linear combination of the

eigenvectors of L, [
ûh,1
ûh,0

]
=

NΓ∑
`=1

α`

[
ξh,`φ̂h,`
φ̂h,`

]
+ β`

[
ξ−1
h,`φ̂h,`

φ̂h,`

]
.
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Invoking (4.17), we obtain that[
ûh,q+1

ûh,q

]
=

NΓ∑
`=1

α`ξ
q
h,`

[
ξh,`φ̂h,`
φ̂h,`

]
+ β`ξ

−q
h,`

[
ξ−1
h,`φ̂h,`

φ̂h,`

]
.

As a consequence, by taking the second component, (4.16) is established.
In case that JB 6= ∅ (B is not invertible), we write

ûh,q =

NΓ∑
`=1

rq,`φ̂h,`

for q = 0, 1, . . . , Ns, since {φ̂h,`}NΓ`=1 forms a basis. Noting that both A and B are

bijective from the subspace spanned by {φ̂h,`}`/∈JB to the subspace spanned by

{MΓ φ̂h,`}`/∈JB , the same argument used as above by applying to the subspace

spanned by {φ̂h,`}`/∈JB can show that rq,` = α`ξ
q
h,` + β`ξ

−q
h,` for ` /∈ JB . Since the

coefficients of φ̂h,` for ` /∈ JB in (4.13) vanishes, it follows that

0 = −Bûh,q−1 + 2Aûh,q −Bûh,q+1 = 2
∑
`∈JB

rq,`Aφ̂h,`.

q = 1, 2, . . . , Ns − 1. By linear independence of {Aφ̂h,`}`∈JB , it can be concluded
that rq,` = 0 for q = 1, 2, . . . , Ns − 1 and ` ∈ JB . In other words, coefficients rq,`
may not vanish only if ` ∈ JB , and q = 0 or Ns, which completes the proof. ut

4.2 Discrete normal derivatives

In this subsection, we define the variational discrete normal derivatives on ΓL and
ΓR of finite element functions and derive their coordinate representations.

Let uh ∈ V hΩ̂ be the solution to the problem (4.3), which has a decomposition

uh =
∑Ns
q=0 uh,q with uh,q ∈ VhΓ,q. Since uh satisfies aΩ̂(uh, v

0
h) = 0 for all v0h ∈ V

h
Ω̂

vanishing on ΓL and ΓR, the discrete normal derivative of uh on ΓL from Ω̂, denoted

by ∂huh
∂ν in V hΓL

, is defined in the variational sense by

(
∂huh
∂ν

, vh)ΓL
= aΩ̂(uh, ṽh) for vh ∈ V hΓL

, (4.18)

where ṽh ∈ V hΩ̂ is any extension of vh vanishing on ΓR. The discrete normal deriva-
tive on ΓR can be defined analogously.

Lemma 4.4 Let ûh = (ûh,0, . . . , ûh,Ns) be the coordinate representation of uh corre-

sponding to the decomposition of uh =
∑Ns
q=0 uh,q, whose components are of the form

(4.16). Then the discrete normal derivative ∂huh
∂ν ∈ V hΓL

of uh on ΓL defined by (4.18)
and its analogous one on ΓR have the coordinate representations

∂hûh
∂ν

=
∑
`/∈JB

−Λh,`(α` − β`)φ̂h,` +
∑
`∈JB

3

h
r0,`φ̂h,` on ΓL, (4.19)
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and

∂hûh
∂ν

=
∑
`/∈JB

Λh,`(α`ξ
Ns
h,` − β`ξ

−Ns
h,` )φ̂h,` +

∑
`∈JB

3

h
rNs,`φ̂h,` on ΓR, (4.20)

respectively, where

Λh,` := iµh,`

√
1−

h2µ2h,`
12

.

Proof The discrete normal derivatives ∂huh
∂ν of uh on ΓL and on ΓR have the coor-

dinate representation, ∂
hûh
∂ν , satisfying

MΓ
∂hûh
∂ν

= Aûh,0 −Bûh,1 on ΓL, (4.21)

MΓ
∂hûh
∂ν

= −Bûh,Ns−1 +Aûh,Ns on ΓR, (4.22)

respectively. From (4.21) and the solution representation (4.16), it can be shown
that on ΓL

MΓ
∂hûh
∂ν

=
∑
`/∈JB

[
(α` + β`)ηh,` − (α`ξh,` + β`ξ

−1
h,`)
]
Bφ̂h,` +

∑
`∈JB

r0,`Aφ̂h,`

=
∑
`/∈JB

1

2
(ξ−1
h,` − ξh,`)(α` − β`)Bφ̂h,` +

∑
`∈JB

3

h
r0,`MΓ φ̂h,`.

(4.23)

Noting the choice of ξh,`, (4.14) and (4.15) for ` /∈ JB , it holds that

1

2
(ξ−1
h,` − ξh,`) =

−
√
η2h,` − 1 if h2µ2h,` ∈ (−∞,−6) ∪ (0, 1/%2),√
η2h,` − 1 if h2µ2h,` ∈ (−6, 0).

We can further show that

√
η2` − 1 =

ihµh,`

√
1− h2µ2h,`/12

1 + h2µ2h,`/6
×
{

+1 if h2µ2h,` ∈ (−∞,−6) ∪ (0, 1/%2),

−1 if h2µ2h,` ∈ (−6, 0).

Combining it with (4.11) leads to (4.19). The same argument using (4.22) instead
of (4.21) can show (4.20) and the proof is completed. ut

4.3 Discrete PML operator and its matrix representation

Since the sesquilinear form bPML(·, ·) is coercive in H̃1
0 (ΩPML) × H̃1

0 (ΩPML) as
mentioned earlier in Subsection 2.2, for gh ∈ V hΓ0

the problem

bPML(uh, vh) = 0 for all vh ∈ Ṽ hΩPML
(4.24)

with uh = gh on Γ0 has a unique solution uh ∈ V hΩPML
, where Ṽ hΩPML

is the finite

element space of functions vh in V hΩPML
vanishing on Γ0. Thus we can have an
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extension operator Sh : V hΓ0
→ V hΩPML

defined by Sh(gh) = uh, the solution to the
problem (4.24). Analogously to the continuous PML operator TPML defined as the
variational sense (2.6), we can define the discrete PML operator ThPML : V hΓ0

→ V hΓ0

such that

(ThPMLgh, vh)Γ0
= −bPML(Sh(gh), Sh(vh)) for vh ∈ V hΓ0

. (4.25)

Now, the finite element approximation ũh ∈ V h
Ω̃

to the continuous problem

(2.4) is obtained by solving the problem

b̃(ũh, ṽh) = (f, ṽh)Ω for ṽh ∈ V hΩ̃ .

Then it can be shown that the restriction of ũh to Ω is equal to the solution
uexh ∈ V

h
Ω to the problem

bh(uexh , vh) = (f, vh)Ω for vh ∈ V hΩ ,

where

bh(uh, vh) = (∇uh,∇vh)Ω − k2(uh, vh)Ω − (ThPML(uh), vh)Γ0
.

We remark that the discrete PML operator can be defined on Γj for j = 1, . . . , J−1
for the absorbing boundary condition.

In the rest of this subsection we will study the matrix representation T̂hPML of
the discrete PML operator ThPML. Noting that the triangulation TΩPML

on ΩPML is
defined analogously to that for Ω̂ with Np subintervals of −β < x < 0 (Np = β/h),
we define the subspaces VhΓ,q of finite element functions in V hΩPML

vanishing on all
nodes outside of {−qh} × Γ for q = 0, . . . , Np as done in the preceding section.
Here we abuse the notation of the symbol VhΓ,q used for finite element spaces on

Ω̂ since the meaning of the symbol is clear from context. Then the coordinate
representation ûh = (ûh,0, . . . , ûh,Np) of uh to the problem (4.24) satisfies three
term recurrence

−BPMLûh,q−1 + 2APMLûh,q −BPMLûh,q+1 = 0 (4.26)

for q = 1, 2, . . . , Np − 1, and the boundary condition on Γ0

ûh,0 = ĝh =

NΓ∑
`=1

û`h,0φ̂h,` (4.27)

where ĝh is the coordinate representation of gh and

APML =
1

σ0
Ax + σ0Ay − k2σ0A0, BPML =

1

σ0
Bx + σ0By − k2σ0B0.

Since 1+h2σ20µ
2
h,`/6 6= 0 for all `, we can prove that the generalized eigenvalue

problem for the matrices APML and BPML has a full set of eigenvectors in the
same way as in Lemma 4.2.
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Lemma 4.5 The generalized eigenvalue problem

APMLφ̂ = ηBPMLφ̂ (4.28)

has the eigenvectors φ̂h,` for eigenvalues

ηp,` =

(
1−

h2σ20µ
2
h,`

3

)(
1 +

h2σ20µ
2
h,`

6

)−1

for ` = 1, 2, . . . , NΓ .

The characteristic equation ξ2−2ηp,`ξ+1 = 0 has two distinct solutions, one of
which is smaller than 1 in magnitude, which is the same effect as PML does in the
continuous level, that is, transforming propagating modes to evanescent modes.
More precisely, we set

ξp,` = ηp,` + sgn(µ2h,`)
√
η2p,` − 1

∗
. (4.29)

Here
√
z
∗

is the square root function with branch cut 0 ≤ arg(z) < 2π satisfying

√
z
∗

=
√
z for =(z) ≥ 0 and

√
z
∗

= −
√
z for =(z) < 0. (4.30)

By observing that

=(ηp,`) > 0 for µ2h,` < 0 and =(ηp,`) < 0 for µ2h,` > 0,

|z −
√
z2 − 1

∗
| < 1 for =(z) > 0 and |z +

√
z2 − 1

∗
| < 1 for =(z) < 0,

we find that ξp,` is the solution to the characteristic equation such that |ξp,`| < 1.
Moreover, ξp,` can be written as

ξp,` =
1− h2µ2

h,`σ
2
0

3 + ihµh,`σ0

√
1− h2µ2

h,`σ
2
0

12

1 +
h2µ2

h,`σ
2
0

6

. (4.31)

Now we have the solution formula satisfying three term recurrence (4.26), which
is given in the following lemma.

Lemma 4.6 Suppose that −BPMLûh,q−1 + 2APMLûh,q − BPMLûh,q+1 = 0 for q =
1, 2, . . . , Np − 1. Then ûh,q for q = 0, 1, . . . , Np is of the form

ûh,q =

NΓ∑
`=1

(α`ξ
q
p,` + β`ξ

−q
p,` )φ̂h,` (4.32)

for constants α`, β` ∈ C.

Now, we are ready to find the matrix representation T̂hPML of the discrete DtN
operator ThPML.
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Lemma 4.7 Let ThPML be the discrete PML operator defined by (4.25). Then for ûh,0
expanded as (4.27) the matrix representation of ThPML is given by

T̂hPMLûh,0 =

NΓ∑
`=1

Λp,`û
`
h,0φ̂h,`, (4.33)

where

Λp,` = iµh,`

√
1−

h2σ20µ
2
h,`

12

1− ξ2Npp,`

1 + ξ
2Np
p,`

.

Proof We first note that the coordinate representation ûh of the solution uh ∈
V hΩPML

to the problem (4.24) satisfies (4.26) and hence the homogeneous Neumann
boundary condition on Γβ = {−β} × Γ , −BPMLûh,Np−1 +APMLûh,Np = 0, can be

read as α`ξ
Np
p,` − β`ξ

−Np
p,` = 0 for ` = 1, . . . , NΓ by Lemma 4.6. Thus we can use the

boundary condition (4.27) to obtain

α` =
û`h,0

1 + ξ
2Np
p,`

and β` =
ξ
2Np
p,` û`h,0

1 + ξ
2Np
p,`

.

Since the matrix representation T̂hPML of the discrete DtN operator ThPML sat-
isfies

MΓ T̂
h
PMLûh,0 = −APMLûh,0 +BPMLûh,1,

by using Lemma 4.6 we have

MΓ T̂
h
PMLûh,0 =

NΓ∑
`=1

1

2
(ξp,` − ξ−1

p,` )(α` − β`)BPMLφ̂h,`

=

NΓ∑
`=1

1

2
(ξp,` − ξ−1

p,` )
1− ξ2Npp,`

1 + ξ
2Np
p,`

û`h,0BPMLφ̂h,`.

(4.34)

A simple computation using (4.31) shows that

1

2
(ξp,` − ξ−1

p,` )BPMLφ̂h,` = iµh,`

√
1−

h2σ20µ
2
h,`

12
MΓ φ̂h,`

and hence we have the formula (4.33) for the discrete PML operator. ut

4.4 Error propagation in the discrete level

We consider the discrete local problem (4.3) posed in the reference domain Ω̂ to
find ûh = (ûh,0 . . . , ûh,Ns) ∈ CNΓ×(Ns+1) satisfying

−Bûh,q−1 + 2Aûh,q −Bûh,q+1 = 0 for q = 1, 2, . . . , Ns − 1 (4.35)

and the boundary conditions

∂hûh
∂ν

= T̂hPMLûh,0 + γ̂Lin on ΓL and
∂hûh
∂ν

= T̂hPMLûh,Ns + γ̂Rin on ΓR (4.36)
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with γ̂Lin and γ̂Rin ∈ CNΓ . Once the problem (4.35)-(4.36) is solved, the outgoing
data corresponding to (3.10) are defined by

γ̂Lout = −∂
hûh
∂ν

− T̂hPMLûh,0 and γ̂Rout = −∂
hûh
∂ν

− T̂hPMLûh,Ns . (4.37)

Remark 4.8 We will assume JB = ∅ in the analysis of the rest of the paper since we

rarely encounter the case JB 6= ∅, that is h2µ2h,` = −6, in the most common situation

in reality. However, one can easily show the double sweep DDM for the modes with

` ∈ JB 6= ∅ converges as well.

Recalling the solution formula (4.16) under the assumption JB = ∅, for γLin =∑NΓ
`=1 γ

L
in,`φ̂h,` and γRin =

∑NΓ
`=1 γ

R
in,`φ̂h,`, and using the matrix representations of

discrete normal derivatives and discrete PML operator given in Lemma 4.4 and
Lemma 4.7 we solve the equations (4.36) for α` and β`, and then use them in the
equations (4.37) for the outgoing data as done for (3.12) in the continuous level
problem to obtain that [

γ̂Lout,`
γ̂Rout,`

]
=

[
εh,` ζh,`
ζh,` εh,`

] [
γ̂Lin,`
γ̂Rin,`

]
, (4.38)

where

ζh,` =
(1−Q2

h,`)ξ
Ns
h,`

1−Q2
h,`ξ

2Ns
h,`

, εh,` =
(1− ξ2Nsh,` )Qh,`

1−Q2
h,`ξ

2Ns
h,`

. (4.39)

Here Qh,` is the discrete reflection coefficients for the `-th mode defined by

Qh,` =
−Λh,` + Λp,`
−Λh,` − Λp,`

=

√
1− h2µ2

h,`

12 −
√

1− h2σ2
0µ

2
h,`

12

1−ξ2Npp,`

1+ξ
2Np
p,`

−
√

1− h2µ2
h,`

12 −
√

1− h2σ2
0µ

2
h,`

12

1−ξ2Npp,`

1+ξ
2Np
p,`

. (4.40)

Denoting z = hµh,`, by Taylor’s theorem one can show that the discrete reflection
coefficient Qh,` satisfies the asymptotic behavior

Qh,` =
1

48
(1− σ20)z2 − ξ2Npp,` +O(‖(z2, ξ2Npp,h )‖2) (4.41)

for small z and ξ
2Np
p,h .

From now on we will estimate the entries εh,` and ζh,` of the error propagation
matrix as well as the discrete reflection coefficient Qh,` in more detail. Since Qh,`
depends on |ξp,`|2Np , we begin by estimating |ξp,`|2Np . We let w = hµh,`σ0 and
write ξp,` in (4.31) as the function of w

ξp,` = χ(w) =
1− w2

3 + iw

√
1− w2

12

1 + w2

6

.

Clearly, we have |χ(w)| < 1 from the definition of ξp,` = χ(w) and the asymptotic
behavior of χ(w) holds

χ(w) = 1 + iw +Rχ(w) (4.42)

with Rχ(w) = O(w2) for small w.
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Due to the convergence theory of finite element eigenvalues, for small 0 < ε∗ <
µmin we can find a positive constant h0 such that if 0 < h ≤ h0, then the compact
sets [0, µN − ε∗] and i[0, µ̃N+1 − ε∗] do not have discrete wavenumbers µh,` of any

modes. The decaying property of ξ
2Np
p,` is presented in the following lemma, whose

proof will be given in Appendix.

Lemma 4.9 For any ε > 0 there exists 0 < h1 ≤ h0 such that if 0 < h ≤ h1, then

|ξp,`|2Np ≤ (1 + ε)e−2σµβ

for all ` = 1, . . . , NΓ .

From Lemma 4.9 and the asymptotic behavior (4.41) of Qh,` for small z and

ξ
2Np
p,` , we can easily show that the discrete reflection coefficient Qh,` can be asymp-

totically reduced to a constant multiple of e−2σµβ provided that h and z are small
enough.

Lemma 4.10 Let δz :=
√∣∣48/(1− σ20)

∣∣e−σµβ . Then it holds that

|Qh,`| . e−2σµβ (4.43)

for 0 < h ≤ h1 and |hµh,`| ≤ δz.

We may need to choose small h so that the discrete reflection coefficients Qh,`
for all discrete propagating modes fulfill the condition (4.43), that is, hµh,` ≤ δz
for all µh,` > 0, however we do not introduce another bound of h for simple
presentation and assume that if h ≤ h1, then hµh,` ≤ δz for µh,` > 0. We define
`∗ > N such that if ` ≤ `∗, then |hµh,`| ≤ δz but |hµh,`| > δz otherwise, and note
that `∗ increases to NΓ as h tends toward zero.

Remark 4.11 We further assume that h1 is small enough so that the `-th evanescent

modes corresponding to µh,` for ` > `∗ are sufficiently small, |ξNsh,`| � 1. Indeed, as

inferred from the graph of ξ = η ±
√
η2 − 1 as a function of x = (hµ)2 < 0 for

evanescent modes in Fig. 2, we have |ξh,`| < Cξ < 1 for some Cξ depending only on δz

when |hµh,`| ≥ δz, from which it follows that |ξNsh,`| = |ξ
H/h
h,` | → 0 as h → 0. Thus we

can assume that h1 is small enough so that if 0 < h ≤ h1, then |ξNsh,`| � 1 for the `-th

evanescent modes with ` > `∗. The exponential decay of ξNsh,` is engaged significantly

in the error analysis because the discrete reflection coefficients Qh,`, satisfying the

asymptotic formula

|Qh,`| ≈

∣∣∣∣∣
√

1 + x−
√

1 + xσ20√
1 + x+

√
1 + xσ20

∣∣∣∣∣ (4.44)

with x = (hµh,`)
2/12 resulting from (4.40) for sufficiently small ξ

2Np
p,` , get worse with

increasing `.

Next, we estimate the entries of the error propagation matrix for small z =
hµh,`.
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Lemma 4.12 Assume that 0 < h ≤ h1 and ` ≤ `∗. Then it holds that

|εh,`| ≤ Cde−2σµβ

|ζh,`| ≤ 1 + Cde
−4σµβ

for a positive generic constant Cd.

Proof Due to the fact that |Qh,`| ≤ Ce−2σµβ � 1 and |ξNsh,`| ≤ 1, we use the Taylor
expansion with respect to Qh,` to obtain∣∣∣∣∣ 1− ξ2Nsh,`

1−Q2
h,`ξ

2Ns
h,`

∣∣∣∣∣ =
∣∣∣(1− ξ2Nsh,` ) +O(Q2

h,`)
∣∣∣ ≤ C,∣∣∣∣∣ 1−Q2

h,`

1−Q2
h,`ξ

2Ns
h,`

∣∣∣∣∣ =
∣∣∣1 +O(Q2

h,`)
∣∣∣ ≤ 1 + Ce−4σµβ

for a generic constant C. Then, the required estimates result from the definition
(4.39) of εh,` and ζh,` and the above inequalities. ut

The next lemma deals with the case of |z| > δz, which can be proved in the
similar way by using |ξNsh,`| � 1 instead of |Qh,`| � 1.

Lemma 4.13 Assume that 0 < h ≤ h1 and ` > `∗. Then it holds that

|εh,`| ≤ (1 + C|ξ2Nsh,` |)|Qh,`|,

|ζh,`| ≤ C|ξ2Nsh,` |

for a generic constant C.

5 Double sweep for the finite element problem

In this section we analyze the convergence of the double sweep DDM applied to
the Helmholtz equation discretized by the finite element method.

5.1 Embedding operators

Let Iinj and IΓj be the index sets of nodes on Ω̄j \ (Γ j ∪Γ j−1) and Γ̄j , respectively.

Then every function in V hΩj is obtained by restricting a function in V hΩ to Ωj , that

is, for vh ∈ V hΩj , we can write vh as a linear combination of nodal basis functions

ϕi in V hΩ ,

vh =
∑
i∈Iinj

vh,iϕi|Ωj +
∑
i∈IΓj

vh,iϕi|Ωj +
∑

i∈IΓj−1

vh,iϕi|Ωj (5.1)

for vh,i ∈ C.
We remark that the double sweep DDM in the continuous level studied in

Section 3 produces a convergent sequence of approximate solutions, that lie in
H1(Ωj) locally but are discontinuous on the interfaces Γj in general. Because local
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solutions of each iterate are defined in mutually disjoint subdomains, they can hold
data γLj and γRj to be transferred to neighboring subdomains on interfaces. In the
double sweep DDM for the discretized problem, we will find a sequence umh in
V hΩ ⊂ H1(Ω) converging to uexh , that has one trace instead of two different traces
on Γj , but holds correct outgoing data for the next iterate. We can do this by
updating each iterate in a special way. To this end, we need restricted embeddings
of V hΩj into V hΩ . We define EFj : V hΩj → V hΩ for 1 ≤ j ≤ J − 1 and EBj : V hΩj → V hΩ
for 1 ≤ j ≤ J by

EFj (vh) =



∑
i∈Iinj

vh,iϕi +
∑
i∈IΓj

vh,iϕi +
∑

i∈IΓj−1

vh,iϕi for j = 1,

∑
i∈Iinj

vh,iϕi +
∑
i∈IΓj

vh,iϕi for 2 ≤ j ≤ J − 1,

EBj (vh) =
∑
i∈Iinj

vh,iϕi +
∑

i∈IΓj−1

vh,iϕi for 1 ≤ j ≤ J

for vh ∈ V hΩj of (5.1). We note that the operator EFj defined in V hΩj keeps the

boundary values on Γj but not Γj−1 (except for j = 1), which will be used for the

forward sweep. In contrast, the operator EBj defined in V hΩj keeps the boundary
values on Γj−1 but not Γj , which will be employed for the backward sweep.

5.2 Algorithm for the convergence theory

In this subsection we discuss the double sweep DDM algorithm for the discrete
problem. We first note that the discrete incoming data γLh,j and γRh,j corresponding

to γLj and γRj for the continuous level can be computed theoretically as follows.

Assuming that uh ∈ V hΩ is known and denoting by uh,j the restriction of uh to Ωj
(the symbol uh,q has been used for a function in VhΓ,q in Section 4 but uh,j in this

section represents a function in V hΩj ) so that uh,j−1 ∈ V hΩj−1
and uh,j+1 ∈ V hΩj+1

are given, the incoming data coming into Ωj are determined by

γLh,j =
∂huh,j−1

∂νj
− ThPML(uh,j−1), γRh,j =

∂huh,j+1

∂νj
− ThPML(uh,j+1) (5.2)

on Γj−1 and Γj , respectively.

In the double sweep iteration, we denote by γR,m
h and γL,m

h the discrete bound-

ary data corresponding to γR,m and γL,m, respectively,

γR,m
h = (γR,mh,1 , γR,mh,2 , . . . , γR,mh,J−1) ∈ GR

h , γL,m
h = (γL,mh,2 , γL,mh,3 , . . . , γL,mh,J ) ∈ GL

h ,

where GR
h :=

∏J−1
j=1 V

h
Γj and GL

h :=
∏J
j=2 V

h
Γj . Then the discrete double sweep

DDM keeping correct traces on the interfaces by using proper embedding operators
defined in Subsection 5.1 can be given as Algorithm 2.

In this algorithm, it is not computationally cheap to extract incoming data
γL,mh,j and γR,mh,j by using the formulas (5.2) since the discrete PML operators are
involved. However, Algorithm 2 is needed as it plays a crucial role in the conver-
gence analysis. An efficient way to avoid computing γL,mh,j and γR,mh,j directly in

numerical implementations is discussed in [19].
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Algorithm 2 Double sweep DDM of the discrete level problem

1: Set m = 0 and choose any u0h ∈ V
h
Ω .

2: Compute γR,0
h = (γR,0h,1 , . . . , γ

R,0
h,J−1) from u0h.

3: while the residual is larger than given tolerance do
4: Set um+1

h ← umh . . Forward sweep
5: for j = 1, 2, . . . , J − 1 do

6: i.iiCompute γL,mh,j from um+1
h,j−1 with γL,mh,1 = 0.

7: ii.iSolve the local problem for wh,j ∈ V hΩj

bhj (wh,j , vh) = (f, vh)Ωj

+ (γL,mh,j , vh)Γj−1
+ (γR,mh,j , vh)Γj for vh ∈ V hΩj .

(5.3)

8: iii.Update the values of um+1
h corresponding to nodes in Iinj ∪IΓj by using EFj (wh,j).

9: end for
10: Compute γL,mh,J from um+1

h,J−1. . backward sweep

11: for j = J, J − 1, . . . , 1 do

12: i.iiCompute γR,m+1
h,j from um+1

h,j+1 with γR,m+1
h,J being ignored.

13: ii.iSolve the local problem (5.3) for wh,j ∈ V hΩj with γR,mh,j replaced by γR,m+1
h,j .

14: iii.Update the values of um+1
h corresponding to nodes Iinj ∪IΓj−1

by using EBj (wh,j).

15: end for
16: Set m← m+ 1.
17: end while

5.3 Convergence of the discrete double sweep DDM

In this subsection, we analyze the convergence of the discrete double sweep DDM
as the main result based on the reflection coefficients studied in Subsection 4.4.
The main result is that the double sweep process can be viewed as a contraction
mapping of the boundary data coming from the right boundaries of subdomains
and its contraction factor is determined by the maximal reflection coefficient de-
pending on which reflection coefficient of ` ≤ `∗ or ` > `∗ is dominant. It turns out
that the number of iterations can also increase logarithmically with the number
of subdomains if the reflection coefficient of ` ≤ `∗ including propagating modes
is larger than the other.

As the continuous level problem, we estimate the discrete forward sweep op-
erator Fh : γR,m

h 7→ γL,m
h and the analogous one for backward sweep Bh : γL,m

h 7→
γR,m+1
h . We proceed the convergence analysis for the double sweep operator by

splitting two cases depending on whether the mode index ` is larger than `∗. For
γh ∈ V hΓ we let γh,≤ and γh,> be consisting of the Fourier components of γh with
` ≤ `∗ and ` > `∗, respectively. Also, γh,≤ and γh,> are analogously defined for
vector functions.

5.3.1 The case of ` ≤ `∗

In this case, we use Lemma 4.12 instead of Lemma 3.2 in the arguments used for
verifying that B ◦ F is a contraction mapping in Subsection 3.3, and hence we are
led to the following lemma showing that the double sweep operator in the finite
element problem serves as a contraction mapping for modes of ` ≤ `∗.
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Lemma 5.1 Assume that h < h1. Let c0h be a positive constant such that c0h(J−1) <
1 as well as (2Cdc

2
0h + C2

dc
4
0h)(J − 1) < 1. If the PML parameters are chosen such

that e−2σµβ < c0h, then for modes such that |hµh,`| < δz it holds that

‖γL,m
h,≤ ‖Ḣ−1/2

h (Γ )
≤ Cδ(J − 1)e−2σµβ‖γR,m

h,≤ ‖Ḣ−1/2
h (Γ )

,

‖γR,m+1
h,≤ ‖

Ḣ
−1/2
h (Γ )

≤ Cδ(J − 1)e−2σµβ‖γR,m
h,≤ ‖Ḣ−1/2

h (Γ )

for some generic constant Cδ > 0 that may depend only on k.

Proof The estimates are the results for the discrete level problem analogous to
those for the continuous level problem given in Lemma 3.4, Lemma 3.5 and
Lemma 3.6. In order to establish the estimates, we have only to follow the same
lines used for the three lemmas for the continuous level problem by using Lemma 4.12
instead of Lemma 3.2 once the discrete version of the stability corresponding to
(3.23) is provided. Thus, it suffices to prove

‖γR,m+1
h,J−1,≤‖Ḣ−1/2

h (Γ )
. ‖γL,mh,J,≤‖Ḣ−1/2

h (Γ )
.

To this end, let ΩJPML = (xJ−1 − β, xJ−1)× Γ be the PML region for the local
problem posed on ΩJ and ũh,J be the solution to the problem in Ω̃J defined by

ΩJ attached to ΩJPML with γL,mh,J,≤ given on the transmission condition on ΓJ−1,

aJ (ũh,J , φh) + bJPML(ũh,J , φh) = (γL,mh,J,≤, φh)ΓJ−1
for all φh ∈ V hΩ̃J , (5.4)

where bJPML(·, ·) is defined analogously to bPML(·, ·) and V h
Ω̃J

is the finite element

space on Ω̃J . Then the restriction uh,J of ũh,J to ΩJ satisfies the stability result

‖uh,J‖H1(ΩJ ) . ‖γ
L,m
h,J,≤‖Ḣ−1/2

h (Γ )
. (5.5)

Using (4.18), (4.25), (5.4) and (5.5), we have

|(γR,m+1
h,J−1,≤, φh)ΓJ−1

| = |aJ (ũh,J , φh)− bJPML(ũh,J , φh)|

= |2aJ (uh,J , φh)− (γL,mh,J,≤, φh)ΓJ−1
| . ‖γL,mh,J,≤‖Ḣ−1/2

h (Γ )
‖φh‖H1(Ω).

Utilizing a bounded extension operator from V hΓJ−1
to V h

Ω̃J
and (4.2), we obtain

that

‖γR,m+1
h,J−1,≤‖Ḣ−1/2

h (Γ )
. sup

06=φh∈V hΓJ−1

|(γR,m+1
h,J−1,≤, φh)ΓJ−1

|
‖φh‖H1/2(Γ )

. ‖γL,mh,J,≤‖Ḣ−1/2
h (Γ )

,

which completes the proof. ut
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5.3.2 The case of ` > `∗

In this case we have |ζh,`| � 1 by Remark 4.11 and Lemma 4.13. We write the
forward sweep operator as a matrix form

γL,m
h,` = εh,`Ξh,`γ

R,m
h,` , (5.6)

where Ξh,` is the (J−1)× (J−1) Toeplitz matrix given by (3.21) with ζn replaced
by ζh,`.

For the analysis of the backward sweep operator, we need to investigate error
propagation arising in ΩJ . We conduct the similar computation used for (4.38)
with the transmission condition on ΓJ replaced by the homogeneous Neumann
boundary condition to obtain

γR,m+1
h,J−1,` =

Qh,` + ξ2Nsh,`

1 +Qh,`ξ
2Ns
h,`

γL,mh,J,` := ε̃h,`γ
L,m
h,J,`

with |ε̃h,`| = |Qh,`|+O(|ξ2Nsh,` |). Inductively, it can be shown that

γR,m+1
h,` = diag(εh,`, . . . , εh,`, ε̃h,`)Ξ>h,`γ

L,m
h,` . (5.7)

Combining (5.6) and (5.7), we get the action of the double sweep operator

γR,m+1
h,` = diag(εh,`, . . . , εh,`, ε̃h,`)εh,`Ξ

>
h,`Ξh,`γ

R,m
h,` .

Let us define

qQ = max
`>`∗
{|εh,`|‖Ξh,`‖`2 , |ε̃h,`|‖Ξh,`‖`2}. (5.8)

By examining the smallest eigenvalues of Ξ−1h,` (Ξ−1
h,` )∗ it can be shown that ‖Ξh,`‖`2 ≤

1 +O(|ζh,`|), and hence it follows from Lemma 4.13 that

qQ ≈ max
`>`∗
{|Qh,`|}.

The estimates of the double sweep operator for modes of ` > `∗ are given in
the following lemma resulting from (5.6) and (5.7).

Lemma 5.2 Assume that h < h1. For ` > `∗, it holds that

‖γL,m
h,> ‖Ḣ−1/2

h (Γ )
≤ qQ‖γR,m

h,> ‖Ḣ−1/2
h (Γ )

,

‖γR,m+1
h,> ‖

Ḣ
−1/2
h (Γ )

≤ q2Q‖γ
R,m
h,> ‖Ḣ−1/2

h (Γ )
.
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5.3.3 Convergence

Here we combine all estimates in the above to have the contraction property of
Bh ◦ Fh : GR

h → GR
h . We introduce contraction factors

q = max{qQ, Cδ(J − 1)e−2σµβ} and r = max{q2Q, Cδ(J − 1)e−2σµβ},

where the maximal values are taken among all modes involved in traces of approx-
imate solutions generated by the double sweep DDM.

Lemma 5.3 Assume the conditions in Lemma 5.1. Then it holds that

‖γL,m
h ‖

Ḣ
−1/2
h (Γ )

≤ q‖γR,m
h ‖

Ḣ
−1/2
h (Γ )

, (5.9)

‖γR,m+1
h ‖

Ḣ
−1/2
h (Γ )

≤ r‖γR,m
h ‖

Ḣ
−1/2
h (Γ )

. (5.10)

Proof The orthogonality of the basis leads us to

‖γR,m+1
h ‖2

Ḣ
−1/2
h (Γ )

= ‖γR,m+1
h,≤ ‖2

Ḣ
−1/2
h (Γ )

+ ‖γR,m+1
h,> ‖2

Ḣ
−1/2
h (Γ )

.

By invoking Lemma 5.1 and Lemma 5.2, we have the contraction property (5.10)
of the double sweep operator,

‖γR,m+1
h ‖2

Ḣ
−1/2
h (Γ )

≤ r2(‖γR,m
h,≤ ‖

2

Ḣ
−1/2
h (Γ )

+ ‖γR,m
h,> ‖

2

Ḣ
−1/2
h (Γ )

) = r2‖γR,m
h ‖2

Ḣ
−1/2
h (Γ )

.

The proof of (5.9) can be done in the same way and the proof is completed. ut

Finally, we can establish the convergence of the discrete double sweep DDM
in H1(Ω).

Theorem 5.4 Suppose that f = 0. Let umh ∈ V hΩ be the m-th iterate of the double

sweep DDM for any u0h ∈ V
h
Ω . Assume that 0 < h < h1 and c0h is a positive constant

satisfying c0h(J − 1) < 1 as well as (2Cdc
2
0h + C2

dc
4
0h)(J − 1) < 1. Let KR

j for

j = 1, . . . , J − 1 be the set of all triangulations τ ∈ TΩj that have at least one vertex

on Γj and denote ΩR = Ω \ (∪J−1
j=1 ∪τ∈KR

j
τ̄). If the PML parameters are chosen such

that e−2σµβ < c0h, then it holds that

‖umh ‖H1(ΩR) . (r + q)rm−1‖u0h‖H1(Ω).

Furthermore, we have the L2-norm convergence in the whole domain Ω,

‖umh ‖L2(Ω) . (r + q)rm−1‖u0h‖H1(Ω).

Proof Let ũmh = (ũmh,1, . . . , ũ
m
h,J ) ∈

∏J
j=1 V

h
Ωj , where ũmh,j is the solution to the local

problem in Ωj with the boundary data γL,m−1
h,j and γR,mh,j , obtained during the

backward sweep. By the same argument used for Theorem 3.8 with Lemma 3.4
and Lemma 3.6 replaced by Lemma 5.3, we can show that

‖ũmh ‖V . ‖γR,m
h ‖

Ḣ
−1/2
h (Γ )

+ ‖γL,m−1
h ‖

Ḣ
−1/2
h (Γ )

. (r + q)‖γR,m−1
h ‖

Ḣ
−1/2
h (Γ )

. (r + q)rm−1‖u0h‖H1(Ω).
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Here we used ‖γR,0
h ‖Ḣ−1/2

h (Γ )
. ‖ũ0

h‖V and ‖ũ0
h‖V = ‖u0h

|H1(Ω) in the last inequality. Since ũmh,J = umh,J and vmh,j := ũmh,j − u
m
h,j for j =

1, . . . , J − 1 is supported in ∪τ∈KR
j
τ̄ , it is obvious that

‖umh ‖H1(ΩR) ≤ ‖ũ
m
h ‖V . (r + q)rm−1‖u0h‖H1(Ω).

In addition, a simple computation gives

‖vmh,j‖
2
L2(Ωj) =

∑
τ∈KR

j

‖vmh,j‖
2
L2(τ) =

∑
e∈TΓj

h

3
‖vmh,j‖

2
L2(e) =

h

3
‖vmh,j‖

2
H1/2(Γj)

.

Since the trace of umh,j on Γj coincides with that of ũmh,j+1, it is obtained by a trace
inequality that

J−1∑
j=1

‖vmh,j‖
2
H1/2(Γj)

≤ 2
J−1∑
j=1

(
‖ũmh,j‖

2
H1/2(Γj)

+ ‖ũmh,j+1‖
2
H1/2(Γj)

)
. ‖ũmh ‖

2
V.

Therefore combining the above estimates gives

‖umh ‖
2
L2(Ω) ≤ ‖ũ

m
h,J‖

2
L2(Ω) + 2

J−1∑
j=1

(
‖ũmh,j‖

2
L2(Ωj) + ‖vmh,j‖

2
L2(Ωj)

)
. ‖ũmh ‖

2
V . (r + q)2r2(m−1)‖u0h‖

2
H1(Ω),

which completes the proof. ut

As a consequence of this theorem, since the contraction factor for the propagat-
ing modes depends linearly on the number of subdomains, the number of iteration
increases only logarithmically with respect to the number of subdomains.

6 Numerical experiments

In this section, we provide numerical examples illustrating the convergence theory
studied in the preceding section. The domain Ω in this section is set to be a
rectangular one and the left-side boundary of Ω is assigned for PML and the
homogeneous Neumann boundary condition are given on all other boundaries. The
problem is discretized with the help of the finite element library deal.II [2] and the
solution is approximated by using continuous piecewise bilinear finite elements.
The double sweep DDM is applied to the finite element problem with the stopping
criterion that residuals relative to the initial residual are less than 10−5.

6.1 Dominant contraction factor

In the first experiment, we discuss which contraction factor between Cδ(J−1)e−2σµβ

and q2Q is dominant provided h is small enough. The domain Ω is the unit square
Ω = (0, 1)× (0, 1) and the finite element mesh nodes are deployed with h = 1/400
on the domain. We take somewhat large β = 0.1 (which results in large Np = 40)
in this example to avoid excessively slow convergence when q2Q is dominant. For
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Fig. 3: it# vs. k when J = 5, σµ = 20 and β = 0.1 with e−2σµβ ≈ 0.0183 <

max`{|Q2
h,`|} ≈ q2Q. In (a), the blue dash-dot curve : it# for with zero initial

iterates; the red dash curve : it# for random initial iterates.

both cases, the PML parameter σµ = 20 is taken so that the continuous reflection
coefficient is bounded by e−2σµβ ≈ 0.0183.

We consider a source problem with a compactly supported L2 source function
f defined by

f(x, y) =

{
1 if ‖(x, y)− (0.1, 0.2)‖`2 ≤ 0.05,
0 otherwise

(6.1)

and the double sweep DDM with J = 5 starts with zero or random initial iterates.
Fig. 3 (a) reports the number of iterations, denoted by it#, of the double sweep
DDM vs. wavenumbers from 5 to 100. The blue dash-dot curve represents it# of
the double sweep DDM starting with zero initial iterates, and it shows that at
most five iterations are enough to obtain the desired approximate solutions for all
wavenumbers except for k = 85 and it appears that the number of iterations does
not depend on wavenumbers. According to Fig. 3 (c), it looks that the peak at
k = 85 is caused by the fact that the mesh size h = 1/400 is not small enough for
Qh,` of near-cutoff modes for k = 85 to drop down to the level of e−2σµβ unlike
cases for other k shown in Fig. 3 (b), for example k = 20.

The residuals of the m-th iterates are evaluated and they are given in Fig. 4 (a).
We also estimate the numerical contraction factors rh (the ratio of two consecutive
residuals) shown in Fig. 4 (b), where the left y-axis represents the contraction fac-
tors and the right y-axis stands for the values rh/e

−2σµβ , constant multiples of the
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(a) Residuals with zero initial iterates
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(c) Residuals with random initial iterates
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Fig. 4: Residuals of the m-th iterate and numerical contraction factor rh obtained
by the ratio of two consecutive residuals.

maximal continuous reflection coefficient. They exhibit that the sequences gener-
ated by the double sweep DDM converge linearly with contraction factor which
are constant multiples of the maximal continuous reflection coefficient ranged be-
tween 0.2 and 4. For k = 85, the constant multiple is computed with respect to
the peak 0.2793 in Fig. 3 (c) instead of e−2σµβ . Thus it can be concluded that
if support of the source function f is located away from interfaces of subdomains
and the double sweep DDM starts with a zero initial iterates, then the convergence
in these examples is controlled by the maximal continuous reflection coefficients
since the residuals include only propagating modes and relatively slowly decaying
evanescent modes in their traces on the interfaces of subdomains.

On the other hand, the red dash curve in Fig. 3 (a) shows it# of the double
sweep DDM starting with random initial iterates. Convergence of this case is slow
compared with that of the double sweep DDM with zero initial iterates but they
still converge linearly (see Fig. 4 (c)). In case that q < Cr, Theorem 5.4 shows that
the number of iterations it# required for residuals relative to the initial residual

to be within given tolerance τ can be estimated by mr :=
ln(τ/‖r0‖L2 )

ln r , where r0
stands for the initial residual. Interestingly, the shape of the plot of it# looks
similar to that of mr given by the black dash-dot curve in Fig. 3 (a) as a function
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of wavenumbers when r = q2Q and τ = 10−5. Thus, by observing that e−2σµβ ≈
0.0183 < max`{|Q2

h,`|} from the solid green curve in Fig. 3 (a), the slow convergence
of the double sweep DDM is explained by the existence of fast decaying evanescent
modes in random initial iterates whose discrete reflection coefficients are dominant.
This is also supported by Fig. 4 (d) demonstrating that the numerical contraction
factors coincide with the actual contraction factors governed by max`{|Q2

h,`|} ≈ q
2
Q

in theory. Another interesting observation is that the performance of the double
sweep DDM with random initial iterates is different wavenumber-by-wavenumber
as opposed to that starting with a zero initial iterate. In fact, the discrete maximal
reflection coefficient depends on σ0 as shown in the asymptotic formula (4.44).
That is, the performance of the method depends on the relative position of k with
respect to the distribution of the cross-sectional eigenvalues. In particular, when
there exist near-cutoff modes corresponding to µN � 1 or µ̃N+1 � 1, which are
known to be troublesome for PML, the performance of the method is deteriorated
and this is supported by the plot of max{µ−1

N , µ̃−1
N+1} given in Fig. 4 (d) showing

the same shape as that of the maximal reflection coefficients.

6.2 Influence of the transmission condition based on PML

The next experiments are to examine the influence of the transmission conditions
depending on two PML parameters σµ and β. We take f given by (6.1) in the
domain Ω = (0, 1)× (0, 1) and set J = 5 and h = 1/400.

1 Case I: varying σµ with β = 0.1 fixed.
For the first case, we examine the performance of the method with different

values of σµ with β = 0.1 fixed. When the double sweep DDM is fed a zero vector
or a random vector for an initial iterate, we obtain the results presented in Fig. 5
(a) and (b), respectively.

In case of the double sweep DDM with zero initial iterates for σµ = 10, 15 and
20, we see that it# decreases monotonically with increasing σµ. In fact, when h

is small enough and r = Cδ(J − 1)e−2σµβ , the contraction factor decreases as σµβ
increases.

Next, we compare the performance of the double sweep DDM starting with
random vectors when σµ = 15 and 20 with β = 0.1 fixed. When a random vector
is chosen for the first iterate, q2Q is a dominant factor as seen in the experiments
of Subsection 6.1. Interestingly, Fig. 5(c) and (d) show that |Qh,`| near the cutoff
index N becomes smaller as we take larger σµ as expected, however the values of
|Qh,`| are arranged in the reverse order far away from the cutoff index. This can
be explained by examining the asymptotic formula (4.44) of the discrete maximal
reflection coefficient. Thus, if q2Q is dominant over Cδ(J−1)e−2σµβ for each σµ, then
it# decreases with decreasing σµ, which can be observed for most wavenumbers
except for k = 65, 90 and 100 in Fig. 5 (b).

2 Case II: varying β with σµ = 10 fixed.
For the second case, we examine the performance of the method with different

values of β with σµ = 10 fixed. The results obtained with zero and random initial
iterates are presented in Fig. 6 (a) and (b), respectively. When the double sweep
DDM starts with a zero vector for β = 0.1, 0.2, 0.3 and so the contraction factor
r is governed by the term Cδ(J − 1)e−2σµβ , it# decreases monotonically with
increasing β as shown in Fig. 6 (a). When the double sweep DDM starts with a
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(a) Starting with a zero initial iterate
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(b) Starting with a random initial iterate
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Fig. 5: it# vs. σµ with β = 0.1 and J = 5. In (c) and (d), plots of |Qh,`| for k =
30. The horizontal lines in the plots represent the maximal continuous reflection
coefficients e−2σµβ for the PML parameters σµ and β corresponding to the same
color and the same line style.

random vector, however, q2Q can be dominant over Cδ(J − 1)e−2σµβ . According to
Fig. 6 (c) and (d), the maximal discrete reflection coefficients do not depend on β,
which is justified by the asymptotic formula (4.44) independent of β for sufficiently
large β, so that it# can be constant for all sufficiently large β if the contraction
factor r is controlled by q2Q. These results can be observed in Fig. 6 (b), where the
red dash-dot curve of β = 0.2 coincides with the blue solid curve of β = 0.3 for all
k except k = 85 and 100.
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(a) Starting with a zero initial iterate
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(b) Starting with a random initial iterate
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Fig. 6: it# vs. β with σµ = 10 and J = 5. In (c) and (d), plots of Qh,` for k = 30. The
horizontal lines in the plots represent the maximal continuous reflection coefficients
e−2σµβ for the PML parameters σµ and β corresponding to the same color and
the same line style.

6.3 Dependence on h

The next experiment exhibits the behavior of the double sweep DDM with respect
to h. Here we consider two examples. The first one is for h-independent perfor-
mance of the double sweep DDM. We take Ω = (0, 1) × (0, 1) and set σµ = 20,
β = 0.1. The domain Ω is decomposed into 5 subdomains, i.e. J = 5 and so H = 0.2,
and the finite element method with h = 1/100, 1/200 and 1/400 is applied.

As for the behavior of Qh,` with respect to h, we see Fig. 7 (b) and (c) showing
that the discrete reflection coefficients for each ` get smaller as h decreases, however
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(a) Starting with a random initial iterate
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Fig. 7: it# vs. h for random initial iterates with σµ = 20, β = 0.1 and J = 5. In
(b) and (c), plots of Qh,` for k = 30. The horizontal line in the plots represents

the maximal continuous reflection coefficients e−2σµβ .

the maximal discrete reflection coefficients for different values of h with σµ and β

fixed do not have noticeable difference. This is because the upper bound of x in the
right hand side of (4.44) is independent of h. The double sweep DDM with random
initial iterates produces the results in Fig. 7 (a), showing that the convergence of
the double sweep DDM is governed by q2Q ≈ max`{|Q2

h,`|}. Since max`{|Q2
h,`|} do

not have any significant change for different h = 1/100, 1/200 and 1/400, only
one plot for h = 1/400 is reported with its corresponding reference number of
iterations mr in Fig. 7.

In contrast, the convergence of the double sweep DDM may depend on h if
approximate solutions includes only a partial set of modes such as propagating
modes and slowly decaying evanescent modes. As an example, we take the domain
Ω = (0, 0.2) × (0, 1) and decompose it into 5 subdomains so that J = 5 and
H = 0.04 and use h = 1/200, 1/400 and 1/800 for finite element approximations.
Assume that f is a point source located at (0.05, 0.5). By using PML with σµ = 30
and β = 0.1, we obtain it# shown in Fig. 8 (a) revealing that the performance of
the double sweep DDM is improved as h is getting smaller. In order to examine
the convergence with respect to h in more detail, we estimate the convergence
factors for k = 10 in Fig. 8 (c), exhibiting that numerical contraction factors
are approximately 0.7828, 0.5399 and 0.3222 for each h respectively, compared
with max`{|Q2

h,`|} ≈ 0.7936. Since reflection coefficients for propagating modes
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(a) f is a point source at (0.05, 0.5)
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(b) f is a point source at (0.02, 0.5)

0 5 10 15 20 25 30
10

-6

10
-4

10
-2

10
0

R
e

s
id

u
a

ls

(c) Residuals
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Fig. 8: it# vs. h for zero initial iterates with σµ = 30, β = 0.1, J = 5 and H = 0.04.
In (c) and (d), residuals and estimated number of modes in residuals for k = 10.

are less than 10−2 for all h and they are significantly smaller than the numerical
contraction factors calculated as above, we infer that the contraction factor r
is determined by q2Q. In addition, according to Fig. 8 (d), we find that there are
roughly 140 ∼ 180 modes involved in traces of approximate solutions on interfaces.

At last, it is worth pointing out that the modes involved in traces of approx-
imate solutions on interfaces are related with the distance from the source to
interfaces. If a point source is located farther from interfaces of subdomains, then
more evanescent modes emitting from the source can diminish on interfaces and
the contraction factors become smaller, which results in the smaller numbers of
iterations. For example, we consider a point source located at (0.02, 0.5). In this
case the distance from the source to the interfaces is 0.02, which is greater than
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J
Np 5 6 7 8 9 10 11 12 13 14 15

4 13 10 9 8 7 6 6 5 5 5 4
8 18 15 13 11 10 9 8 7 7 6 6
16 25 14 12 11 10 9 8 8 7 7
5 16 13 11 10 9 8 7 7 6 6 5
10 44 16 13 12 10 9 8 8 7 7 6
20 22 15 13 11 10 9 9 8 8 7

Table 1: it# with zero initial iterates for k = 80, h = 1/400. Here σµ is chosen such
that e−2σµβ ≈ 0.0183 for varying Np.
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Fig. 9: Discrete reflection coefficients Qh,` for k = 80 with h = 1/400, σµβ = 2.

the distance (= 0.01) from the source at (0.05, 0.5). We see that the numbers of
iterations for the case of the point source at (0.02, 0.5) given in Fig. 8 (b) are
smaller than those for the point source at (0.05, 0.5).

6.4 Dependence on J , the number of subdomains

In this subsection we conduct experiments to see how the double sweep DDM
depends on J . To do this, we take the square domain Ω = (0, 1) × (0, 1) and
decompose Ω into uniform quadrilateral finite elements with h = 1/400. Through
this test, we also investigate how large the PML width β = hNp is required to
keep it# constant as J increases. The PML strength σµ is chosen such that the
reflection coefficient e−2σµβ is constant for varying β. For k = 80, the test results
of the double sweep DDM with zero initial iterates for J = 4, 5, 8, 10, 16 and 20,
are shown in Table 1. As described in Theorem 5.4 when Cδ(J − 1)e−2σµβ is the
dominant reflection coefficient, it is observed in Table 1 that

it# = O(ln(J)). (6.2)

for each Np. Since it is of importance to understand how fast Np needs to increase
to keep it# constant with growing J in the practical use of the double sweep DDM,
we also examine Np with the same number of iterations as J increases, for instance,
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we consider it# in the cells with gradual color in Table 1. They demonstrate that
Np grows logarithmically with respect to the number of subdomains,

Np = O(ln(J)), (6.3)

which has been already noticed in [36] of studying the double sweep DDM with
PML of quadratic stretching functions in the open space R2. In fact, this result
(6.3) can be explained in terms of the discrete reflection coefficients as shown
in Fig. 9. It reveals that Qh,` decreases exponentially for each ` as Np increases

linearly in the above the black dash-dot line representing e−2σµβ . It means that

Np = O(ln(1/r)) = O(it−1
# ). (6.4)

This result can be found in each row of Table 1 by comparing it# for the pairs
of Np, for example, (5, 10), (6, 12) and (7, 14). Finally, it follows from (6.2) and
(6.4) that it# is proportional to ln(J) and 1/Np, which leads to (6.3) to keep it#
constant.

6.5 Experiments with respect to Np with σµβ fixed

Next, we present some experiments in the square domain Ω = (0, 1) × (0, 1) of
the double sweep DDM of PML with respect to Np with σµβ fixed. The earlier
research of the double sweeping preconditioners based on PML with quadratic
stretching functions in [12,35,36] studied computational costs of the method with
respect to Np since it is preferable to minimize the computational cost by taking as
small Np as possible. Assuming that n is the number of the grid points along each
axis of the physical domain Ω, [12] shows that the double sweep preconditioning
technique requires O(N2

pn
2) and illustrates numerical examples with Np = 10

for its efficiency. Also, in [35] smaller Np such as 5 or 6 is used in the domain
decomposition framework and the double sweep DDM with Np = 3, 4 or 5 in [36]
is successfully used for coarse grid solvers in the multi-level framework. When
the domain Ω is decomposed into J subdomains of equal size, the computational
costs for one sweep are of order O((nJ + 2Np)

2nJ). From (6.3), it can be seen
that Np for the minimal computational costs grows of order O(ln(n)). Indeed, for
the asymptotic analysis, we just replace J with eNp in the asymptotic cost rate
(nJ+2Np)

2nJ and find that the minimal cost occurs when Np satisfies (2+Np)e
Np ≈

n, which shows
Np = O(ln(n)) and J = O(n) (6.5)

for the same number of iterations. This result can be observed in Table 2 with σµ
and β = hNp chosen so that the maximal reflection coefficients remain the same,
e−2σµβ ≈ 0.0183, for varying Np. Therefore, it turns out that the computational
cost is of order O(N2

pn
2), which is the same order of the method studied in [12].

We further perform experiments of the double sweep DDM for PML with
quadratic stretching functions defined by

x̃ =

{ σ0

β3

∫ x
0
t2dt for x > 0,

x for x ≤ 0

for the absorbing boundary condition and its analogues for transmission conditions
with σ0 as in Subsection 2.2 and compare them with those obtained with constant
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h
Np 5 6 7 8 9 10 11 12 13 14

1/200 10 7 6 5 5 4 4 4 4 4
1/400 11 8 6 6 5 5 4 4 4 4
1/800 12 8 7 6 5 5 5 4 4 4

Table 2: it# with zero initial iterates for k = 80, J = 5. Here σµ is chosen so that
e−2σµβ ≈ 0.0183 for varying Np.

k
Np piecewise constant piecewise quadratic

5 10 20 40 5 10 20 40

20 6 5 5 5 6 5 5 5
55 10 5 4 4 6 4 4 4
80 11 5 4 4 5 4 4 4
95 15 6 6 6 7 6 6 6

Table 3: it# with zero initial iterates for J = 5 and h = 1/400 in waveguides.

k
Np piecewise constant piecewise quadratic

5 10 20 40 5 10 20 40

20 75 38 19 10 8 4 4 3
55 37 19 10 5 6 3 3 3
80 32 16 8 5 6 3 3 3
95 48 24 12 7 8 4 4 4

Table 4: it# with random initial iterates for J = 5 and h = 1/400 in waveguides.

stretching functions of this paper. We take a constant σµ = 6 for quadratic stretch-
ing functions, because the stretching function is normalized by the PML width,
so that the reflection coefficient is equal to that for PML with constant stretching
functions, e−2σµ/3 ≈ 0.0183. Numbers of iterations of the double sweep DDM for
J = 5, h = 1/400 and for several wavenumbers k = 20, 55, 80, 95 are reported
in Table 3 and Table 4. As discussed in the previous subsection, it can be seen
that it# decreases with growing Np. An important observation is that the perfor-
mance of PML with quadratic stretching functions is better in particular, when the
double sweep DDM starts with random initial iterates. It appears that fast decay-
ing evanescent modes can be transmitted well by PML with quadratic stretching
functions as opposed to PML with constant stretching functions.

We also apply the double sweep DDM to the Helmholtz equation in the open
space R2 with only imaginary parts being stretched by PML. The results are
presented in Table 5 and Table 6. It shows that PML of Np = 5 can provide
good transmission conditions for both cases of constant and quadratic stretching
functions, when initial iterates are zero. However it# increases drastically with
decreasing Np for the double sweep DDM with PML of constant stretching func-
tions starting with random initial iterates. This phenomenon is more noticeable
in the lower frequency regime. It seems that the solutions of low frequency in the
open space correspond to near-cutoff modes of large wavelength in waveguides, for
which large σ0 is required for sufficient absorption and it makes in turn discrete
reflection coefficients large.
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k
Np piecewise constant piecewise quadratic

5 10 20 40 5 10 20 40

20 5 4 4 3 5 4 4 3
55 6 4 4 3 5 4 4 3
80 5 4 3 3 5 4 3 3
95 5 4 3 3 5 4 3 3

Table 5: it# with zero initial iterates for J = 5 and h = 1/400 in R2.

k
Np piecewise constant piecewise quadratic

5 10 20 40 5 10 20 40

20 95 26 8 4 4 3 3 3
55 15 5 3 3 5 4 3 3
80 8 4 3 3 5 4 3 3
95 6 4 3 3 5 4 3 3

Table 6: it# with random initial iterates for J = 5 and h = 1/400 in R2.

7 Appendix

In this section, we provide the proof of Lemma 4.9.

Proof (Proof of Lemma 4.9) We will estimate

χ(w)2Np =
(

(1 + iw +Rχ(w))
1

iw+Rχ(w)

) 2β
h (iw+Rχ(w))

:= aw

where

a = (1+iw+Rχ(w))
1

iw+Rχ(w) and w =
2β

h
(iw +Rχ(w)) = 2µh,`σ0β

(
i+
Rχ(w)

w

)
.

Since a → e and Rχ(w)/w → 0 as w → 0, for any ε > 0 we can take a positive
constant δ small enough so that

σr
|arg(a)|

ln |a| < σiε and

∣∣∣∣σ0Rχ(w)

w

∣∣∣∣ < εmin{σr, σi}. (7.1)

for |w| < δ.
Noting |aw| = e<(w) ln(|a|)−=(w)arg(a), we need to estimate <(w) and =(w).

First, for µ2h,` > 0 by using the second inequality of (7.1) we have that

<(w) < −2µh,`σiβ(1− ε) and |=(w)| < 2µh,`σrβ(1 + ε).

The first inequality of (7.1) with the above estimates leads us to

<(w) ln(|a|)−=(w)arg(a) < −2µh,`σiβ ln(|a|)((1− ε)− ε(1 + ε))

< −2µh,`σiβ ln(|a|)(1− 3ε).

Due to the convergence of finite element eigenvalue approximations, there is 0 <
εh < ε∗ for each 0 < h ≤ h0 such that µh,` > µmin − εh for all ` and εh → 0 as
h→ 0. Thus we can further show that for 0 < h ≤ h0

<(w) ln(|a|)−=(w)arg(a) < −2(1− 3ε)β ln(|a|)(σµ − εhσi)
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In the same way, one can show that for µ2h,` < 0

<(w) ln(|a|)−=(w)arg(a) < −2(1− 3ε)β ln(|a|)(σµ − εhσr).

Thus, we have
lim
w→0

|χ(w)|2Np ≤ e2εh(1−3ε)σMβe−2(1−3ε)σµβ

where σM = max{σr, σi}. Since ε can be arbitrarily small, it holds that

lim
w→0

|χ(w)|2Np ≤ e2εhσMβe−2σµβ .

From the fact that eεhσMβ → 1 as h → 0, it then follows that for any ε > 0 there
exist 0 < δ0 and 0 < ĥ1 ≤ h0 such that if |w| ≤ δ0 and 0 < h ≤ ĥ1, then

|χ(w)|2Np ≤ (1 + ε)e−2σµβ . (7.2)

Next, we will prove that (7.2) still holds for |w| > δ0 and for sufficiently small
h. To this end, we write w = hµh,`σ0 = reiθ, where r = |w| and θ = arg(w)
with 0 < θ < π. Let χ̃θ(r) = χ(w) as a function of r. Noting that |χ̃θ(r)|2 =
1 − 2r sin(θ) + O(r2) resulting from the asymptotic behavior of χ in (4.42), it
is revealed that |χ̃θ(r)| is a decreasing function near the origin. By taking into
account the fact limr→∞ |χ̃θ(r)| = 2 −

√
3 < 1, we can choose 0 < δ1 < δ0 small

enough so that
|χ̃θ(δ1)| = max

r≥δ1
|χ̃θ(r)|. (7.3)

Let h1 ≤ ĥ1 be a positive constant such that µminh1|σ0| < δ1. Now, it suffices
to prove (7.2) for h ≤ h1 and |w| ≥ δ1. For |w| ≥ δ1, let ŵ = δ1w/|w|, which can be
written as ŵ = hµ̂h,`σ0 with µ̂h,` = µh,`δ1/|w|. Then µ̂h,` satisfies µmin < |µ̂h,`| as

µminh ≤ µminh1 <
δ1
|σ0|

=
|ŵ|
|σ0|

= |µ̂h,`|h. (7.4)

Since |ŵ| = δ1 ≤ |w|, (7.3) gives |χ(w)| ≤ |χ(ŵ)|, which in turn together with (7.2)
and the fact that |ŵ| < δ0 and |µ̂h,`| > µmin − εh obtained from (7.4) shows that

|χ(w)|2Np ≤ |χ(ŵ)|2Np ≤ (1 + ε)e−2σµβ ,

and the proof is completed. ut
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22. F. Ihlenburg and I. Babuška. Dispersion analysis and error estimation of Galerkin fi-
nite element methods for the Helmholtz equation. Internat. J. Numer. Methods Engrg.,
38(22):3745–3774, 1995.
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