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Abstract In this paper we will analyze the convergence of the non-overlapping
double sweep domain decomposition method (DDM) with transmission conditions
based on PMLs for the Helmholtz equation. The main goal is to establish the con-
vergence of the double sweep DDM of both the continuous level problem and the
corresponding finite element problem. We show that the double sweep process can
be viewed as a contraction mapping of boundary data used for local subdomain
problems not only in the continuous level and but also in the discrete level. It
turns out that the contraction factor of the contraction mapping of the continu-
ous level problem is given by an exponentially small factor determined by PML
strength and PML width, whereas the counterpart of the discrete level problem
is governed by the dominant term between the contraction factor similar to that
of the continuous level problem and the maximal discrete reflection coefficient re-
sulting from fast decaying evanescent modes. Based on this analysis we prove the
convergence of approximate solutions in the H'-norm. We also analyze how the
discrete double sweep DDM depends on the number of subdomains and the PML
parameters as the finite element discretization resolves sufficiently the Helmholtz
and PML equations. Our theoretical results suggest that the contraction factor for
the propagating modes depends linearly on the number of subdomains. To ensure
the convergence, it is sufficient to have the PML width growing logarithmically
with the number of subdomains. In the end, numerical experiments illustrating
the convergence will be presented as well.
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1 Introduction

Solving time-harmonic wave propagation problems governed by the Helmholtz
equation in the high-frequency regime leads to significant computational challenges
due to the highly oscillatory nature of solutions that requires extremely large linear
systems. For efficient solvers to the wave propagation problems various efforts have
been made such as multigrid methods [6L[I3L37,40], shifted-Laplace preconditioners
[01416.39] and analytic incomplete LU (AILU) preconditioners [12L[I7[I§].

The double sweep domain decomposition method (DDM) to be studied in this
paper is conceptually originated from the idea of the last category among others.
The AILU preconditioning technique in [I7] is thought of as an approximate block
LU factorization with a transparent Dirichlet-to-Neumann (DtN) condition for
each subdomain problem replaced by a second order local approximation. Finding
solutions by forward substitutions followed by backward substitutions sequentially
with the approximate block LU factorization gives rise to an approximate inverse
of the Helmholtz operator. Not surprisingly, its performance depends significantly
on the accuracy of the approximate DtN condition. After the efficient absorbing
boundary condition, so-called perfectly matched layer (PML), prevailed in wave
propagation communities, the authors of [12] developed an improved precondi-
tioner based on PML instead of the second order approximation in approximate
LU factorization of [I7].

A transmission condition based on a low-order approximate radiation condition
was studied in [I0] for Schwarz methods for the Helmholtz equation almost three
decades ago. A quantitative convergence theory of the method of [10] for general
domain and general decomposition was established only recently in [20]. The use
of PML transmission conditions was first proposed in [38] and it was implemented
successfully in [34]. The idea of utilizing PML for transmission conditions received
more attention after the advent of [12] which brought about flourishing research
on the double sweep DDM such as [8[152935,41]. Each of these is developed
from different points of views and has different formulations. The method of [§]
transfers volume sources from one subdomain to a neighboring subdomain with
radiation conditions on both sides of sweeping directions in the forward sweep
whereas during the backward sweep it employs a radiation condition on the side
to the direction of the backward sweep and a Dirichlet condition on the opposite
side. On the other hand, subdomain problems of [29] communicate with neigh-
boring subdomain problems via transmission conditions with Neumann data on
interfaces instead of volume sources to reduce computational costs of subdomain
problems. [35[41] also make use of Neumann data (which it is pointed out in [35]
that have the same jump properties as single layer potentials) for subdomain prob-
lems but produce discontinuous approximate solutions compared with continuous
approximate solutions of [8[29]. For an extensive review on sweeping precondition-
ers for the Helmholtz equation, we refer to [19] which gives unifying explanations
of the equivalence between different formulations of sweeping domain decomposi-
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tion solvers including AILU factorizations, source-transfer methods and optimized
Schwarz methods.

It is worth noting that there are recent developments of the sweeping domain
decomposition in two directions with special care of cross-points, rather than the
one-way domain decomposition used in the above-mentioned methods, for solving
the Helmholtz equation in the free space [30,32]. The former [30] is an extension
of the source transfer method [§] based on PML transmission conditions, and the
latter [32] proposes a new approach of an optimized Schwarz method utilizing
Padé-type high-order absorbing transmission conditions.

In this paper, we consider a wave propagation problem governed by the Helmholtz
equation posed in a waveguide. We take the double sweep formulation in [19] and
employ PML with a piecewise constant coordinate stretching function studied in
[25] for transmission conditions. As a main goal, we analyze convergence in both
continuous and discrete levels. It is noted that convergence analyses of the dou-
ble sweep DDM for continuous level problems can be found in [8[29]. In fact the
double sweep DDM was applied in [33] almost two decades earlier to solve the
convection-diffusion problem and its convergence was analyzed based on Fourier
analysis, which is the main tool used in the convergence analysis of this paper.
The methods in [8,29] generate a sequence of approximate solutions continuous
on interfaces between subdomains, and a convergence of approximate solutions is
proved in the H! Sobolev space for a full computational domain. However, the
formulation in [19] gives rise to approximate solutions that are discontinuous on
interfaces between subdomains. So we will provide an H'-norm convergence of
approximate solutions in each subdomain instead of the full domain, exhibiting
that the continuous double sweep DDM converges linearly with contraction factor
depending on the reflection coefficient of PML and the number of subdomains
of a decomposition of the domain. Here we note that as opposed to the double
sweep DDMs in [81[29], the method in this paper has the same formulation of each
subdomain problem in the forward sweep and the backward sweep. Different for-
mulations between the forward sweep and the backward sweep used in [829] are
the price to pay for obtaining the continuity of each iterate.

On the other hand, to the extent of our knowledge, a convergence analysis for
discrete level problems has not been yet available. To investigate the convergence
of the double sweep DDM applied to the linear system resulting from the finite
element discretization, we consider a quasi-uniform and shape-regular quadrilat-
eral/hexahedral mesh of a computational domain, which is obtained by extruding
a quasi-uniform and shape-regular mesh on a cross-sectional boundary into the
waveguide with uniformly distributed grids along the axis of the waveguide. With
this specialized mesh, we can find local solutions to subdomain problems by using
the dispersion analysis for each discrete cross-sectional eigenvalue. With the help
of the solution formula in terms of the roots of the characteristic equation of cer-
tain difference equations, discrete DtN operators for the exact radiation condition
and PML can be derived. Surprisingly, it turns out that the reflection coefficients
of the discrete level problem behave differently from those of the continuous level
problem. More precisely, whereas the reflection coefficients of the continuous level
problem decay exponentially as the decay rate of evanescent modes increases, those
of the discrete problem grow to some number close to one in magnitude for large
mode indices. As a result, if fast decaying evanescent modes are involved in iterates
in the discrete level, sequences generated by the double sweep DDM are doomed
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to converge slowly, although we can expect the same rate of convergence of the
discrete problems as that of the continuous problem otherwise.

As for the convergence rate of the method, there are many significant factors
determining the maximal active discrete reflection coefficient in numerical imple-
mentations such as what types of Fourier modes compose each sequence generated
by the double sweep algorithm, as mentioned earlier, and how strong PML param-
eters are used. The performance of the discrete double sweep DDM depends on
wavenumber as well, however it is in the sense of that it depends on the location
of wavenumber with respect to the distribution of the cross-sectional eigenval-
ues. Indeed, the closer the wavenumber is to cross-sectional eigenvalues the larger
the discrete maximal reflection coefficient is. More importantly, the main conver-
gence analysis reveals that the convergence rate is also affected by the number
of subdomains, denoted by J, that is, as the finite element discretization resolves
sufficiently the Helmholtz and PML equations, the contraction factor for the prop-
agating modes depends linearly on the number of subdomains, J, and hence the
number of iterations can increase proportionally to the log of J. From a compu-
tational point of view, it is important to minimize computational costs by taking
small number of grid points in PML along the axis of waveguides, denoted by Nj.
It is shown that the growth of N is of O(In(J)) as well as O(In(n)) to keep the
same number of iterations with n grid points in each direction of square domains
with uniform mesh, and the cost required for one sweep is of order O(Njn?) .
This result is consistent with one observed in [I21[35] based on PML of piecewise
quadratic stretching functions. These parameter-dependence of the double sweep
DDM will be advocated by various numerical experiments.

At last, this paper is organized as follows. In Section 2 for preliminaries, we
discuss the solution formula of the Helmholtz equation in a straight waveguide and
study PML as an approximate DtN operator. In Section 3, we introduce the dou-
ble sweep DDM algorithm in the continuous level and analyze its convergence. In
Section 4, we study the finite element subdomain transmission problem. Here we
discuss how solutions of the finite element problem in the reference subdomain are
represented in terms of discrete cross-sectional eigenvectors and how errors propa-
gate in local subdomains by analyzing discrete transmission conditions. Section 5
deals with the double sweep DDM algorithm in the discrete level and presents the
convergence analysis of the discretized problem. Section 6 is devoted to showing
numerical experiments to illustrate the convergence theory.

2 Preliminaries
2.1 Model problem

Let 200 = (—o0,a) x I' be a semi-infinite waveguide in RY, d = 2 or 3 with a > 0
constant and I a Lipschitz bounded domain in R4~!. See Fig. |1l We assume that
the axis of the waveguide 2« is parallel to the z-axis for (z,y) € R x R Asa
model problem, we consider the Helmholtz equation with positive wavenumber &
and a wave source f in L?(£2x) supported for z > 0,

—Au—K*u=fin 0,
ou ) (2.1)

- u
a—OOHBQ\FO and %—T(u) on Iy,
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Fig. 1: Semi-infinite waveguide and non-overlapped decomposition of the domain

where (2 is a Lipschitz bounded domain obtained by truncating 2+ at x = 0 with
Io := {0} x I and Iy := {J} x I' the cross-sectional boundaries at « = 0 and
z = a, respectively, which can be identified with I'. Also v stands for the unit
normal vector pointing outward from the domain and 7' is the DtN operator for
the radiation condition at infinity.

We assume that k2 is not an eigenvalue of the problem and in addition
that there is no cutoff mode for the solvability of local subdomain problems, that
is, if A2 denotes Neumann eigenvalues ordered increasingly, 0 = A3 < A2 < ..., of
the negative cross-sectional Laplace operator

—AyYn = A2Y, in I,
Yy (2.2)

W:OOnal—‘,

then A, # k for all n. We take an orthonormal basis {Y;,}52 in L?(I") consisting
of Neumann eigenfunctions and so general solutions to the Helmholtz equation in
the straight waveguide for 0 < < a can be written as

oo
u(z,y) = Z(Anei““w + Bne_i“"x)Yn(y),

n=0

where pun, = v/k2 — A2 with the branch cut of the negative real axis. Since Ay, tends
toward infinity as n — oo, there exists N > 0 (we call it the cutoff index) such
that A\, < k for n < N and A\, > k for n > N so that u, > 0 for n < N represents
the axial frequency or wavenumber of propagating modes and the imaginary part
fn > 0 of un = ifin, for n > N is the decay rate of evanescent modes. For norm
estimates associated with traces on cross-sectional boundaries identified with I,
we introduce Sobolev spaces H*(I') for —1 < s < 1 of functions ¢ = > 0" [ ¢nYn
such that

o0

M7y == D (1 +A%)%|¢n]? < oo.

n=0

see e.g., [27]. Here H~*(I") is understood as the dual space of H*(I') for 0 < s <1
and we use (-, -) r for the duality pairing between H*(I") and H *(I") for 0 < s < 1.
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For numerical computations, the exact radiation condition in (2.1) based on
the DtN operator T : HY/?(Iy) — H~Y/?(Iy),

oo

T(¢) = itndnYn

n=0

for ¢ = >°0°  dnYn in HI/Q(FO), needs to be replaced by an accurate absorbing
boundary condition such as PML [25], complete radiation boundary condition
(CRBC) [21126] or rational approximation [I1] for the DtN operator. In this paper
we will employ PML not only for absorbing boundary conditions of the global
problem but also for transmission conditions of local subdomain problems.

2.2 PML operators Tpmr,

In this section we review basic theories about PML in waveguides (see e.g., [25]).
The PML used for the model problem is defined in terms of a piecewise constant
coordinate stretching function

j:{(ar—i—wi)x for x < 0, U:@:{Uozar—{—wi for x < 0,

T for z > 0, dx 1 for x >0

with positive constants o,,0; and is terminated with a homogeneous Neumann
condition on I'pyp, = {—B} x I', where 8 is a parameter for the PML width. The
parameters o, and o; are determined in such a way that the smallest decay rate
of converted modes from propagating modes and the smallest decay rate of those
from evanescent modes are balanced,

HNO; = AN 4107 1= Oy, (2.3)

which is called the PML strength. These relations determine o¢ = ﬂgi -+ z%
The reason that the Neumann condition is used for the terminal condition on
I'pyr, instead of the usual homogeneous Dirichlet condition is that PML with the
Neumann condition has the better performance in waveguides than PML with
the Dirichlet condition in case that near-cutoff modes (modes corresponding to
Wmin = min{un, i1} < 1) exist, see [206].

Denoting 2 = 2 U Iy U Qpyvr with Qpyr, = (—B,0) x I' (see Fig. , the
variational problem for the PML Helmholtz equation can be written as finding
@ € H'(2) satisfying

b(@,7) = (f, ) for o € H(£2), (2.4)

where

b(@i, 9) = (HVa, VD) 5 — k* (01, 0) 5
with H = diag(c™*,0l4_1). Here (-,-)p is the L% inner product in the domain D.
On the other hand, the sesquilinear form associated with PML on 2ppry,

1 Ou Ov

bPML(uvv) = (;0%’ %)QPML + (Uovyu7 Vyu)QpML - k2(00u7 U)QPML
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satisfies a coercivity (see [25]) in Hg (£2pwmr), the space of functions in H'(2pyy,)
vanishing on Iy, which allows us to define a continuous extension operator S :
H'Y2(I) — H'(2pn1) by S(g) = u, where u is the unique solution to the problem

bpur (u,v) = 0 for v € H} (2par) (2.5)
with « = g on Iy. Then the PML operator Tpyy, @ HY?(Ih) — H-Y?(Iy) is
defined as a DtN operator by Tpumr(9) = —ain ag;g) for g € H'/?(I}). The PML
operator Tpyp, can also be thought of as a variational normal derivative,

(Tomw(9),v) 1, = —beur(S(g), S(v)) for v e HY?(Ip). (2.6)

Now, we consider a problem to find u € H'(£2) satisfying
b(u,v) = (f,v) 0 for ve H (1), (2.7)

where

b(u,v) = (Vu, Vo) g — k*(u,v) g — (TpmL (u),v) ry - (2.8)
It is also shown in [25] that this problem is well-posed and equivalent to the
problem , that is, the restriction of the solution @ of the problem (2.4) to 2
coincides with the solution u to the problem . Its proof proceeds by using the
fact that Tpyy, is an approximation of T. Indeed, the Fourier analysis yields that
the PML operator Tpyr, can be expressed as

S 1— eQiUOILnﬁ 0
TPML((b) = Z <’Lunm) ¢nYn = Z An(bnYn (29)

n=1 n=1

and hence the convergence of Tpy, to T can be proved in the sense that there
exists a positive constant M such that for 0,8 > M

1T = Tomn) (@) gr-172(rpy S €271l a2y -

From here on, we will use a < b for a < Cb with a generic constant C that may
depend on 2 and k but is independent of PML parameters and the number of
subdomains of the double sweep DDM as well as functions involved in estimates.

Remark 2.1 The PML of width 8 and complex coordinate stretching constant oo
can be applied to any cross-sectional boundary identical with I' not only on Ip. In
addition, we will use it for transmission conditions on cross-sectional interfaces between
subdomains throughout the paper. Also we can use PML with different parameters 8 and
oo for different interfaces, however we will take one PML for a simple presentation.

Remark 2.2 Although PML with a piecewise constant coordinate stretching function
is used in this paper for absorbing and transmission conditions of the double sweep
DDM, there are many other types of PML coordinate stretching functions such as
piecewise polynomials [B[7[T2[28,[36] and unbounded functions [3[1Z)]. In particular, it
s shown in [36] that PML equipped with a piecewise quadratic polynomial stretching
function normalized with respect to k and PML width is utilized for an efficient trans-
mission condition of the double sweep DDM. It turns out that PML of a piecewise
quadratic polynomial stretching function gives a better performance than the piecewise
constant counterpart, however the convergence analysis for the double sweep DDM with
PML of the quadratic stretching function is much more difficult in the discrete level
and we leave it for the future research.
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3 Double sweep for the continuous problem

The domain {2 is decomposed non-overlappingly in one-way along the axis of the
waveguide, the z-axis for (z,y) € R x R4™1 2 = szlﬂj with

Qj:(mj_l,xj)xF fOI’jzl,...,J.

Here 0 = 20 < 21 < ... < xj_1 < a=xy. See Fig. |l} For a simple presentation,
we assume that xz; are evenly spaced so that H := z; — x;_; is constant. We
denote interfaces between two neighboring subdomains by I'; = {z;} x I" for j =
1,2,...,J-1.

We note that if «** is the solution to the problem , then the restriction

u® = u“|g, is the unique solution to the local subdomain problem
—AuS® — kKPu§t = f; in 2, (3.1)
i—T u§’ = i—T u$?y on I (3.2)
oy, PML | Uj av,; PML | Uj-1 j—1, .
O g ) = (2 T, ) uSt, on Iy (3.3)
ov,; PML | Uj ov,; PML | Uj1 Fi .

with a homogeneous Neumann condition imposed on boundaries other than I
with j = 1,...,J, where v; stands for the outward unit normal vector on 02;
and f; is the restriction of f to £2;. The right-hand-side of for j = 11is
set to be zero, and the transmission condition for j = J is replaced with a
homogeneous Neumann condition on I'y. The local subdomain problem can also
be written as a variational form,

bj(ui”,v) = (fj,v)q, + <’y]1-',v>pj71 + <fy]R,v)pj for all v e Vg, 1= Hl(Qj), (3.4)

where b;(-,-) is the sesquilinear form in Vi, x Vi, analogous to (2.8) defined by
bj(u,v) = (Vu,Vo)g, — kz(u,v)gj — (Temw(w),v)r,_,ur; for u,v €V,

and
L 0 R 0
Vi = <871/] - TPML) u$Zq, V= <87y] - TPML) u$iq (3.5)
for j = 1,...,J with the obvious modifications for j = 1 and j = J. It is shown
in [25] that for any f; € L?(£2;) and any 'yJL € H_1/2(Fj,1)7 fy})‘ € H_1/2(Fj) the
problem (3.4) has a unique solution u; € H'(£2;) satisfying

R
lujllz o) S Ifillzece;) + HVJLHH—U?(FJ-,I) + v =172,y

Since the boundary data are unknown in seeking for the solution v** in
practice, an iterative method by using approximate data obtained from previous
iterates in neighboring subdomains can be a reasonable alternative, which leads
to the double sweeping iterative solver introduced in [I9]. The formulations in this
paper for the double sweep iteration are the same as those in [19] and we provide
a convergence analysis for the double sweep DDM in both continuous and discrete
levels.
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For the convergence analysis in the continuous level, we let V = H}le Vo,
equipped with the norm

1/2

J
2
lullv = 1> llujllzn e,

Jj=1

for u = (u1,u2,...,uy) € V. The double sweep DDM yields an approximation

u= (u1,uz,...,uy) in V to the solution u*® = (u{*,us”,...,u5").
3.1 Algorithm
To obtain an approximation to u®*, with any initial iterate v = (u},...,u%) € V

0
such that gi’ S H_l/Z(Fj_l U I}), we find the m-th iterate u™ for m = 1,2,...
J

by solving sequentially subdomain problems in {2; from j =1 to j = J — 1 in the
forward sweep and then solving subdomain problems from j = J to j = 1 in the
backward sweep. In solving each local subdomain problem involved in the forward
and backward sweeps, we take three steps as follows: for a current iterate u e V

1. Extract data %L and 7? coming into £2; from w.
2. Solve the local problem for ¢; € Vi, satisfying

bj(85,v) = (£j,0)a, + (s v)r,_, + () oy for all v € Vo, (3.6)
3. Update the j-th component of u with ¢;.

Remark 3.1 When we extract the incoming data, we observe that

(1) At the beginning of the forward sweep in the (m + 1)-th iteration, all VJR’m forj =
1,2,...,J—1 that will be used for the forward sweep can be computed from u"". Thus
we can denote the boundary data coming into each subdomain from the right used

for the forward sweep in the (m~1)-th iteration by v®™ = (wf{’m, 72R’m, . ,7?’_"1’)

in GR .= H;’;ll H~1/2 (I'j) without solving intermediate problems of the forward

sweep. Howewver, ’yij’m is updated immediately after the local problem in §2; 1 is

solved in the forward sweep.
(2) Denoting the intermediate iterate by wmt1/2 after finishing the forward sweep of
the (m+1)-th iteration, all 'y;f’m forj=2,...,J that will be used for the backward

sweep can be computed from uwmt1/2

into each subdomain from the left used for the backward sweep in the (m + 1)-th
iteration by %™ = (yg’m,yé“’m, o ,wg’m) in GV = H;‘ng H_l/Q(Fj) without

solving intermediate problems of the backward sweep. However, 'yR’m'H is updated

immediately after the local problem in §2; 1 is solved in the backward sweep.

(8) From (1), we can view the forward sweep of the (m + 1)-th iteration as a mapping
F:yRm s 4™ Also, from (2), the backward sweep of the (m + 1)-th iteration
can be regarded as a mapping B : y%™ — 4R See the following diagram of the
(m + 1)-th iteration, where E stands for extraction of incoming data. In addition,

. Thus we can denote the boundary data coming
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um+1/2 L,m and 7R,m

can be computed from =

can be computed from ~
part of the diagram. Similarly, u

along the dashed arrows in the left
m+1 L,m and ,YR,m—&-l.

forward sweep backward sweep
u™ um+1/2 umtl

Rym =77 L,m - R,m+1
y F Y B Y

(4) The data ’y;f’m used for the problem in §2; in the forward sweep (2 <j < J—1)is
used again for the problem in (2; in the backward sweep of the same iteration.

(5) The data 'y?’erl used for the problem in §2; in the backward sweep (1 < j < J—-1)
is used again for the problem in §2; in the forward sweep of the next iteration.

The algorithm of the double sweep DDM for the continuous level is presented
in Algorithm 1 with the unnecessary fractional index m+1/2 removed, i.e., umt1/2
after the forward sweep is considered as «™*! in the middle of (m+1)-th iteration.
Since the first subdomain problem in §2; of the forward sweep in the next iteration
is also considered as the last subdomain problem of the backward sweep in the
current iteration, every subdomain problem in {2; needs to be solved twice except
in 27 and £2; during one double sweep. Thus, one iteration of the double sweep
DDM requires 2(J — 1) local subdomain problems in the actual practice.

Since it is essential to understand how the data 'yjrf’m and 'ij’m coming into £2;
are transferred to neighboring subdomains 2;4; after solving the local problem
in £2;, we will investigate a transmission problem in a reference domain identical
with (2; in the next subsection.

Algorithm 1 Double Sweep DDM for the continuous level problem

1: Choose any initial iterate u’ = (u(l), ug, . ,uOJ) satisfying the regularity
—L e HY3(Iy_1) and —L| e H-Y2(1y). (3.7)
ov; Iv;
iy r;
2: Compute v%:0 = (7?’0, .. ,75{;01) from u®.
3: Set m = 0.
4: while the residual is larger than given tolerance do
5: Set w1l « y™. > Forward sweep
6: forj=1,...,J—1do
7: i. Compute ﬁ/]I.“W from u;ﬂjrll with fy{"m =0.
" . L, _ R,
8: ii. Solve the local problem (3.6 with WJL =~;"" and WJR =; " for ¢; € Vg, .
9: iii.Update the j-th component u;.”"'l of u™*! by using ¢,.
10: end for
11: Compute ’yg’m from u’}ljll. > Backward sweep
12: for j=J,J—1,...,1do
13: i. Compute ')/JR‘erl from uy_fil with 'y?’erl being ignored.
14: ii. Solve the local problem (3.6) with 'y]I-‘ = 'y]I.“’m and ;' = 7]13,m+1 for ¢; € V.
15: iii.Update the j-th component u;""'l of ™+ by using ¢;.

16: end for
17: Set m < m + 1.
18: end while
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3.2 Subdomain transmission problem

Let 2 be a reference waveguide 2 = (L,R) x I" of width H = R — L > 0 with
boundaries I, = {L} x I" and I'r = {R} x I". We consider the wave propagation
problem to find u € H'(§2) satisfying

Au+k*u=0in £, (3.8)
o 1o}
875 = Tewmw (u) + i on I, 873 = Tpaw(u) + 7y on Iy (3.9)

together with du/dv = 0 on 92\ TL, UTR, where vf; = >0° | 7k Ya € H™Y2(1y)

and 7} =32 ’Y&Q’n € H-Y/2(I'g) are two input data coming into the domain

2 through the boundaries I7, U I'y. Once solving the problem, we will find the
outgoing data %, and v&, of the solution w,

ou ou
'y(I;ut = —5 — TpML(u) on FL and ’Y?ut = —a - TPML(U) on FR. (310)

We recall that the PML operator Tpyy, : HY/?(I')) — H~Y/?(I') is defined by
(2.9) with the identification between I" and I7,/i. The reflection coefficient of the
n-th mode associated with the PML operator is given by

Qn _ Z,Uzn — Ap _ 622'#71,0057
—ln — An

which is bounded by
|Qn| < e 2748 for all n = 0,1,... (3.11)

due to (2.3). Here we assume that the PML parameters o, and § are chosen so
that e 27+F < 1/2.
We begin by examining the coefficient of the n-th mode of the solution u to

the problem —, written as
Up = Anei“"z + Bnefi“"z.
Two boundary conditions lead to
(—ipn — An)ei”"LAn + (ipn — An)e_i”"LBn = ’Yilfl,n on I,
(ipn — /ln)ei“"RAn + (—ipn — /ln)e_i“"RBn = ’Yi%,n on IR.

The solution to the linear system is given by

|:An:| eilunH |: eiiunR _QneiunL] |:7§17n:|

B = (1 — Qze2innt)(—ipy — Ay) Qe GitinL

From (3.10) it can be obtained by a straightforward computation that
[W?La‘”’”} = {5" C”} [’y}é‘"] , (3.12)

Yout,n C" €n Yin,n

’Yin,n

where o vin H
(1 —Qn)e™n _ (=™ 7)Qn
1= QRe2imnl > "= 1 QZ il

Cn:
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According to the formula , en and ¢, can be interpreted as the coefficients
that measure how much of the incident fields coming through one side boundary
are reflected back out to the same side boundary and are propagating out to the
other side boundary, respectively. Also, it is seen that e, is asymptotically bounded
by the reflection coefficient @,. On the other hand, ¢, represents the phase change
approximately of e»H for propagation modes and shows the amount of decay for
evanescent modes while the modes are traveling from one side to the other.

Lemma 3.2 [t holds that
len] < 3e20uB,

Gn] < 1+ 34708, (3.13)
Proof Using and noting that |e#*"f| < 1, we prove that
_ S2iun H
R
which yields the required inequalities (3.13|). ad

Lemma 3.3 Let u be the solution to the problem (3.8)-(3.9) with v € H~Y/2(I1)
and v& € H_1/2(FR). Then for o, and B such that e 24P < 1/2, the outgoing data

defined by (3.10) satisfy

Ioutll -1z (ry < 327 P niall g-1/2cryy + (14 3¢ ) il ir-1/2 1y (3.14)

Ivoutl 172y < 1+ 3P Indill 12y + 3¢ 272l 1721y -
Proof Invoking ([3.12) and Lemma we can show that

Woutn] < 3¢ 278 Iyl ] 4+ (14 34+ P) i L,
owen] < (1+3e74780) ol |+ 372748 |t L)L

By using the triangle inequality of the norm in Hﬁl/Q(F) we are led to the esti-
mates ([3.14) for v, and A&,. O

3.3 Convergence of the continuous double sweep DDM

As seen in Remark (3) the forward sweep process can be viewed as an operator
F: GR — G defined by F(y®™) = 4%™ and the backward sweep process can
be interpreted as an operator B : G¥ — G defined by B(y»™) = 4®™+1. There-
fore, the double sweep process can be thought of a linear operator from the right
boundary data v®™ of the m-th iteration to the right boundary data %™+t of
the (m + 1)-th iteration. For convergence of the error functions u™ — u**, assum-
ing that f; = 0 by linearity of the problem, we have only to show that Bo[F is a
contraction in G®.

We first estimate the forward sweep operator F by using Lemma [3.3| repeatedly
from 21 to 2;_;.
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Lemma 3.4 Let co < 1/2 be a positive constant such that (6¢3 + 9¢3)(J — 1) < 1.
If the PML parameters are chosen such that e 2P < co, then the forward sweep
operator I mapping from 7R’m to Y™™ satisfies the estimate

L, - R,
Iy N gr=1r2(ry < (J = 1)e 201 "N er-1r2(ry- (3.15)
In particular,
L, - R,
V5" M-/ S VT = 12724 g oaa (3.16)

Proof For the notational simplicity, we denote ¢ = e 27uP We begin with an
estimation of 72L’m by applying Lemma to the subdomain §2; with y{*m =0,
which shows
L,m R,m
72 ||H—1/2(F1) < 3ellmy ||H—1/2(F1)‘

For j =3,4,...,J, Lemma|[3.3| leads us to

L, R, 2y 1L,
v ™ =12,y < Bellvy 2T =12 ry_yy + (L4 3y Y =172y )

The inductive argument for increasing j yields that
J—1
L, 2\j—i—1y_R,
7™ lgr-/2er,_yy <3¢ > (1432 T -2 (- (3.17)
i=1

Thus, each 'y;”m for j = 2,...,J can be bounded by

J—1
™ a2,y < B DA +3E2 Iy s (3.18)

i=1

due to the Cauchy-Schwarz inequality. Noting that (14-3¢2)2(/=1) < 6(662+964)(J_1),
one can easily show that for (6¢% 4 9¢*)(J — 1) < 1

_ 2, g4
j;lu +3€2)20-D < e ZQ I;) -1 2(J —1). (3.19)

Combining and shows that for j =2,...,J
||73»L’m||§rl/2(rl,_1) S - 1)||’7R’m||§171/2(r)~ (3.20)
Adding up for j =2,...,J gives us . Also, is the result from
with j = J, which completes the proof. O

If we denote the forward sweep operator for the n-th mode by F,,, then we find
that F,, is a lower triangular Toeplitz matrix by using (3.12]) repeatedly from (24
to 25_1, i.e., F, =enZy, where

1
G 1
5= & G 1 , (3.21)
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Since |¢n] = 1 for propagating modes, the norm of =, is of order O(J — 1) and
hence the dependence of the stability constant on J appears to be inevitable.

The backward sweep operator B can be estimated in the similar fashion as
done for the forward sweep operator F but with only a special care for the cavity
;.

Lemma 3.5 Let co < 1/2 be a positive constant such that (6¢3 + 9¢)(J — 1) < 1.
If the PML parameters are chosen such that e 20uB < co, then the backward sweep
operator B mapping from v%™ to 7R’m+1 satisfies the estimate

_ L
IV a2y S 0 = De 821y g aa iy + VI = LT ™ 12, -
(3.22)

Proof Let ¢ = e~ 278 We first note that the solution u'l" € Vj to the problem in
2 satisfies

L,
luF N2, S W™ Na-12er, )

By a standard trace estimate with the stability of the solution we have

m

R,m+1 ., 0u L,
vy a-are e,y = ”ﬁ +TPML(“T}L)||H71/2(FJ,1) S vy m||H71/2(FJ,1)~

(3.23)
Noting that

R,m+1 L, 2y RymA+1
;™ =2y < 3elvy i Ng-172¢myy + A+ 3T a-12(r,,0)

resulting from Lemma@ applied to the subdomain (2, for j =1,...,J -2, the
inductive argument for decreasing j from j = J — 2 to j = 1 shows

J—1
R,m+1 E 2yimi =yl
H’Yj m ||H—1/2(Fj) < 3e (143e7)7 173 m|‘H*1/2(Fz:—1)
i=j+1

2\J—j—1) Rym+1
+ (143 T e, -
By the Cauchy-Schwarz inequality we can have

J—1
" -1 () < C((?)e)2 > A +33)2 I IV e G20
S 3.24

a4 362)2("’7"1)IIW§Z¥+1|\E71/2(FJ_1)>.
Since the condition (6¢% + 9¢*)(J — 1) < 1 implies
1+ 362)2(J_j_1) <(1+ 6> + 964)J_1 < B FON(T-1) e,
invoking the same estimate as in the forward sweep, we can show that
" 2y S E = DIV =120y + 05 a2, (3:25)

Finally, (3.22)) results from adding all (3.25) for j = 1,...,J —1 and then applying
3-23). 0
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Now, we are in a position to show that the double sweep operator Bo F is a
contraction for sufficiently small e =245,

Lemma 3.6 Let co be a positive constant such that co(J — 1) < 1 as well as (6¢3 +
9¢3)(J — 1) < 1. If the PML parameters are chosen such that e~27#% < ¢q, then the
double sweep operator B o F mapping from ’yR’m to 'yR’"Hl satisfies the estimate

R,m+1 -2 R,
Y =12y < Coor(J = 1)e 710 |1y "Ner-1r2¢r)
for some positive constant Cgor that may depend only on k and §2;.

Proof Let e = e~2918 We use Lemma and Lemma to show that

L
I ey S T = D2 ey + (= DR ™ 2z,
S (52('] - 1)2 + I)EQ(J - 1)2||7R’m||21-171/2(r)-
Since €2(J — 1)? < 1, the desired estimate is achieved. O

Remark 3.7 If 25 is also open to the right, then the constant Cgor becomes a generic
constant independent of k and 25 according to the proof of Lemmal[3.5 and Lemma[3.6

Theorem 3.8 Suppose that f = 0. Let u"* € V be the m-th iterate of the double
sweep DDM for any u® satisfying (13.7). Assume that co < 1/2 is a positive constant

satisfying co(J —1) < 1 as well as (6¢§ +9¢3)(J — 1) < 1. If the PML parameters are
chosen such that e 2718 < co, then it holds that

[u™ v S (Cror(J — 1)e 27 [u]| .

Proof Since the m-th iterate u™ is determined by v®™ and 4™ ~!, by the stability
of local problems we have

,m

R, Lm—1
e v S 1Y " Ng=12(ry + I 1721y
which can be in turn by Lemma [3.:4 and Lemma [3.6]
_2 R,m—
™ v S Clor(J — 1) P |ly™ ™ | g ya .

Finally, Lemma [3.6] and a trace inequality reveal that

1™y S (Caor(J = 1)e 27 ™ Iy sy

< (Caor(J — 1e 2™ |y,
which completes the proof. ad

As a consequence, the double sweep DDM converges if we apply PML such
that C]BOF(J — 1)6_20“6 < 1.
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4 Analysis of the finite element subdomain transmission problem

In this section we study the finite element transmission problem on the reference
domain 2 that will be used to analyze the convergence of the double sweep DDM
applied to the Helmholtz equation discretized by the finite element method.

We first introduce the finite element spaces on the whole domain 2 and on
the reference domain 2. Let h = H/Ns = (/N, for positive integers Ns and
Np. We define a quasi-uniform and shape-regular interval/quadrilateral mesh 7
of maximal diameter » on I' and identify the triangulation 7, on I; with Tp.
We introduce quasi-uniform and shape-regular quadrilateral/hexahedral meshes
To; and Topy, of subdomains 2; and 2pyr,, respectively, which is obtained by
starting with the triangulation of 7, and extruding elements in 7, by every h
along the axis of the waveguide. Thus, the common interface I'; of £2; and £2;; for
j=1,...,J — 1 has the same face triangulation Tr; inherited from 2; and £2;,,.
Let T = Uj=1 T, for the finite element mesh of 2 and T5 = T U Ty, for that
of 2. By V2 vk V}}j and V(]}PML we denote finite element spaces of continuous

piecewise bilinear /trilinear functions defined in (NZ, 2, 2; and 2pnr, corresponding
to their triangulations, respectively. VI@J, is the finite element space induced by the
trace of functions in ng and VI@ can be defined by its identification with VI@J_ . We
can also define 7g, Tr,, Ty, and Vg, VI@L, V}LR, analogously.

4.1 Solution representation in (2

The interval (L, R) is decomposed into the Ns numbers of uniform subintervals

H
L=ay<a1<...<an, =R, aq—aq_1:F:hforqzl,...,Ns.
S

Then the triangulations at {aq} x I" are all identical for ¢ =0, ..., Ns. We will use
Vl}k,q for the finite element spaces of continuous piecewise bilinear/trilinear finite

element functions vanishing on all nodes outside of {aq}xI" as a subspace of Vg . Let
Nr denote the dimension of Vliiyq. Note that vl}}',q is different from the finite element
space Vl}fj on the interface I';, although they have the same dimension. We see that
every function wuy in the finite element space Vg of dimension N x (Ns + 1) can
be written uniquely as u;, = Zé\];o up,q With up, 4 € Vﬁq. With the same ordering
of the nodal finite element basis functions in every Vl}i,q, we denote by 4y , the
coordinate representation of uj , with respect to the nodal finite element basis.
Then 4p = (Gp,0,---,p N, ) is the corresponding vector in CNrx(Ns+1) for 4, .

Let us first consider the finite element approximation to the eigenvalue problem
(2.2) on the cross-section I'. Denoting the finite element approximations to the
eigenvalue problem ([2.2)) by (thyg,)\%x) € VI@ xR for £ =1,2,..., Npr with Np =
dim(VI@), the coordinate representations ggh’g e RNT of ¢n.¢ With respect to the
nodal finite element basis functions are solutions to the eigenvalue problem in a
finite dimensional space

Sréne =M eMron.e, (4.1)
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where S and M are the Ny x N stiffness and mass matrices, respectively. We
assume that eigenvalues are ordered increasingly,

A S A2 < S A Np-

Here we note that A, , > 0 and the largest eigenvalue /\,QL’NF = O(h™?) by the
inverse inequality so that there exists a positive constant C'\ such that )\%’ @hQ <
Ci. Also, we can choose the eigenvectors QAS;M of , which are orthonormal
with respect to the Mp-inner product defined by (z,y) . = (Mpa,y) for z,y €
CNT. Due to the interpolation theory [1[4[37], it can be shown that the discrete
fractional order norm defined by

Nr
o
lwnllFre oy = D1+ Ak o) lwf |
=1

for wy, € fo and —1 < s < 1, is equivalent to the continuous fractional order
norm, where wll} = (wp, dn.¢)r, that is, there exist positive constants C1 and Co
independent of h such that

Cillwnllzsry < lwnllgs py < Collwnllms ) (4.2)
for wy, € V.

Now, for given 7,1; S VIL’L and 7{5 € VI@R consider the problem to find uy € Vg
such that

bl (up, o) = (v, vn) ry, + (Y, vn) ry for all vy € VA, (4.3)
where
bty (un, vn) = ag(un,vi) — (TP (un), vi) i ors - (4.4)
with
ag(un,vp) = (Vup, Vog) g — k‘Q(uh,vh)Q. (4.5)

Here Ty, is the discrete PML operator, that will be discussed in Subsection
We will consider b;‘(7) = b?z(7) and a;(-,-) = ap(-,-) with £ = 2; in dealing
with the local subdomain problems later. In this case, the system matrix for the
sesquilinear form b}}”)(" -) can be written as the block tridiagonal matrix

A—TE —B
-B 2A -B
AR (4.6)
—-B 2A -B
—~BA—Thy

where A in the diagonal blocks is an Ny x Ny matrix related with interaction of two
basis functions supported on the same cross-section whereas B in the off-diagonal
blocks is one that results from two basis functions supported on two different
neighboring cross-sections. Tl stands for the matrix corresponding to the dis-
crete PML operator Ty, which also will be studied in Subsection together
with T\, By splitting the matrices A and B into three parts corresponding to
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each term in (£.5), A = Ay + Ay — k?Ap and B = B, + By — k? B, respectively, we
obtain that

h 1 hk? ~h 1 | hk?
Indeed, noting that bilinear/trilinear functions are obtained by tensor products,
it can be shown that

A:E = %Ml—’a A’lj = gSF7 AO = gMF,
1 Ch “h (4.8)
By =3 Mp, By = S, Bo = " Mr.

Assuming that the mesh size h satisfies h < 1/(ok) with mesh density ¢ > 2 so
that there exist a certain amount of grid points per wavelength for resolving wave
phenomena properly, the positivity of )\i ¢ > 0 yields that

£

2 2 2;2
hopp o < W%k SQQ’

(4.9)
where pp, o = /k? — )\%72.

Now, the invertibility of the matrices A and B is discussed in the following
lemma. To do this, let Jg be a set of indices ¢ such that 1 4 h2u,2l_’2/6 =0.

Lemma 4.1 The matriz A is invertible. If Jg = &, then the matriz B is invertible
as well. If Jg # O, then eigenvectors ¢y, ¢ for £ € Jp generate the null space of B.

Proof The formula (4.7) implies that

. 1 h2u2 .

Adhe =4 <1 - 3h’€ Mrop. e, (4.10)
R 1 h2u3 , -

Béne = 1 <1 + 6“ Mr .. (4.11)

Noting that {&h,g}é\’;l forms a basis in CNT, since 1 — hQ,u,QL’E/?) # 0 due to
and M is invertible, the matrix A maps a basis to another basis, which implies
that A is invertible. Similarly, if Jg = @, by the same argument as above, B is
invertible. When Jg # O, yields that B(;Aﬁh,g =0 for £ € Jg and the vectors

Bq@hl for ¢ ¢ Jp are linearly independent, which completes the proof. d
Lemma 4.2 If¢ ¢ Jp, then quSh,g is an eigenvector of the generalized eigenvalue prob-

lem

A¢p =nBo (4.12)

-1
h2uj huj
=|1- > 1 > .
Mh,e ( 3 + 6

Proof 1t follows from (4.10) and (4.11]). O

for an eigenvalue
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In order to study solutions to the problem (4.3]), which satisfy three term
recurrence

— Biipg_1 + 2Aiiy, g — Bl g1 =0 for g =1,2,..., Ny — 1, (4.13)

we examine solutions to the characteristic equation ¢2 — 2np, ¢€ + 1 = 0 for each
Nhe, £ ¢ Jp. The eigenvalue 7, ¢ is real and its absolute value is classified into
three possible cases:

For |0y, ¢| = 1, the characteristic equation has a multiple root, however this can
not occur for sufficiently small h > 0. Indeed, |n;, ¢| = 1 if and only if hzﬂ%,e =0
or 12. The condition for the mesh resolution gives h2,u,2174 # 12. In addition,
the assumption excluding cutoff modes with sufficiently small h guarantees that
pi ¢ = k* = Aj, o # 0, which results in h*p3 , # 0.

el < 1 if and only if 0 < h?4? , < 12. By the assumption saying that
hui <1/ <1forall £ =1,2,...,Np, we have only 0 < 7, < 1 and in this
case the solution &, o with (¢, ») > 0 of the characteristic equation can be written
as

Ene = he +iy/1—np = M if 0 < hPpuj < 1/0° (0<mpe<1)  (4.14)

for some iy, , > 0. We note that the condition p%j > 0 corresponds to that for
propagating modes of the continuous problem and in fact, these modes represent
discrete propagating modes approximating continuous propagating modes. For
such pp, ¢ with 0 < hpyp ¢ < 1/0, 15,0 is a Padé approximation to cos(hyy, ¢),

—1
T T ST
Nh,e = (1 =3 1+ 5 =1- — T O((hpn e)*)

and hence £}, ¢ is an approximation of et for a propagation mode at x = h,

o= eihuz’z ~ eihﬂh,é ~ eihp,"

for some pn > 0, a wavenumber of a propagating mode. Thus, we call u, , and N}*z,e
the discrete wavenumber and the numerical wavenumber of the ¢-th mode, respec-
tively, corresponding to the continuous wavenumber pu, of the n-th propagating
mode. It is known that the discrepancy between ,u;;e and pp, is the main source for
the pollution error in finite element approximations for wave propagation problems
[22,23,24].

[7h.e| > 1 if and only if h2l‘%,e < 0 or h2u%7é > 12. By the assumption on
the mesh resolution, we have only hzu%,z < 0. It is equivalent to the condition

that piﬁg < 0, which is the same condition as that for evanescent modes of the
continuous problem. In this case, we choose

Mhe = /Mhe—1 if —6< h2ui o <0 (nne>1), (4.15)

Ehe = .
M+ /mf =1 if B2ui p <=6 (e < —2)

satisfying |5, ¢| < 1. See the plot of [¢] as a function of x = (hp)? < 0 in Fig.
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~ 0.2679
4~ 0.1010

Fig. 2: Plot of |¢| as a function of = (hu)? < 0 for evanescent modes. Here
limg— — oo |€(z)] = 2—+/3 and |¢(—12)| = 5—+/24. The green vertical line represents
the lower bound —12 of z in two dimensional problem as the cross sectional discrete
Neumann eigenvalues for I' = (0,1) are /\%L = 12h" % sin? (5% =)/ (1+ 20082(2§GF )

and hence (hup n,.)? = h?k* — hQA,Ql,NF > —12.

Lemma 4.3 Suppose that —Biiy, g—1 +2Aty, g— Bip g1 =0 forg=1,2,...,Ns—1.
Then iy, 4 for q =0,1,..., Ns is of the form

ing = (et o+ Be&y Ddne + (00,0 +0n..9) > Tq.ePne (4.16)

¢Jp teJp

Jor constants ay, By and rg ¢, TN, ¢, where §g 4 is the Kronecker delta and &, o is the

solution to the characteristic equation &2 — 2np,0€ +1 =0 given by (4.14) or (4.15)
depending on np 4.

Proof We first consider the case that Jg = &, that is, B is invertible. In this case,
Uy, q satisfies

L{ Gip g } _ [23*1/1 71] { G, g } _ ah,qﬂ}
Up,q—1 I 0 | [th,g—1 Upg |’
from which we see that
[u’zﬂ“] =1 {Tf“} for ¢g=0,1,...,Ns — 1. (4.17)
Uh,q Up,0

Since it holds that

I Sﬁéh,e _ (277h185hz D)o §:|:1 €hg¢he
b0 5 ¢he bne |

X N Nr

-1

Fh,ﬁf’h,@] , ghuﬂ)h’e is a basis consisting of eigenvectors of L for eigenval-
Ohe Phe —1

ues {&.0, fh é}évf Therefore, “h:11 can be written as a linear combination of the
Uh,0

X Nr -
Up,1 &n, Mhz €1 Pht
|:72h,0:| z:: [ } o { i } '

eigenvectors of L,
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Invoking (4.17]), we obtain that

Upgr1| _ als qa |EnePhe —q |&n 1P
N = Z a£€h7g LZE + /Bégh)g N .
=1 h.£

Uh,q Dh e

As a consequence, by taking the second component, (4.16]) is established.
In case that Jg # @ (B is not invertible), we write

Nr
Up,q = qu,eagh,e

=1
for ¢ =0,1,..., Ns, since {(Z;h’g}é\[:rl forms a basis. Noting that both A and B are
bijective from the subspace spanned by {q@h’g}mJB to the subspace spanned by
{Mréne}egr,, the same argument used as above by applying to the subspace
spanned by {qghyg}MJB can show that ryy = aggg)e + ,ng}zz for £ ¢ Jg. Since the
coefficients of ¢fh,4 for ¢ ¢ Jp in vanishes, it follows that

0= —Biipg—1 + 2Aipq — Bip g1 =2 Y rq0Abp e
ledp

g=1,2,...,Ns — 1. By linear independence of {A$h7g}[eJB, it can be concluded
that rg o = 0 for ¢ = 1,2,...,Ns — 1 and ¢ € Jp. In other words, coefficients r, g
may not vanish only if £ € Jg, and ¢ = 0 or N, which completes the proof. O

4.2 Discrete normal derivatives

In this subsection, we define the variational discrete normal derivatives on Iy, and
I'r of finite element functions and derive their coordinate representations.
Let uy, € Vg be the solution to the problem (4.3]), which has a decomposition

up = Z(J]V:SO up,q With up, 4 € Vﬁq. Since uy, satisfies aﬁ(uh,vg) =0 for all v) € VJ,%

vanishing on 7, and I'r, the discrete normal derivative of uy, on I'f, from 2, denoted

h
by aaﬁh in VI@L, is defined in the variational sense by

oy .
(Tyhﬂ’h)FL = aﬁ(uh,vh) for v € ‘/IELL7 (418)

where v, € Vg is any extension of vj, vanishing on I'g. The discrete normal deriva-

tive on I'r can be defined analogously.
Lemma 4.4 Let Gp, = (Up.0,-..,Un, N,) be the coordinate representation of uy corre-
sponding to the decomposition of uy, = Zé\[:so Up,q, whose components are of the form

h
(4.16)). Then the discrete normal derivative 687;;1 € V]«’L of up, on I, defined by (4.18)
and its analogous one on I'r have the coordinate representations

ol . 3 .
8yh = Z —Ap (g — Be)pn,e + Z 7r0.tbne on I, (4.19)
¢ =
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and

oy,

‘ N\ 2 3 -
= Z Ah,e(aeiﬁi - ﬂzéh,%)qﬁh,e + Z 7N Pt on Ir, (4.20)
ZQJB ledp

respectively, where

h2uf, 4
Ap =1 1-—.
Bt i= Tp,e D

h
Proof The discrete normal derivatives 9 a5~ of up on I, and on I'r have the coor-
. . a4 . .
dinate representation, <%, satisfying

oy,

M[' p) = Aﬁhp — B'I:Lh71 on FL, (421)
14
My, X X
M[v 9 = 7B’u,h7N<_1 + Auh N. Oon FR, (422)
l/ E 9 s

respectively. From (4.21)) and the solution representation (4.16)), it can be shown
that on I,

ol - 2 3
Mp 8Zh = Z [(az + Be)nn,e — (apbn + 5@5;&)} Bop ¢+ Zz]: 70,0 AdK ¢
¢ e €Js (4.23)
=Y Yt — e —BoBd+ S BrouMrd
5 &hne = Ene)(ae = Be) Bone 5 T0.eMrone.
{¢Jp Lejp

Noting the choice of &, 4, (4.14) and (4.15) for £ ¢ Jpg, it holds that

1 —\/mh =1 if h?uj € (=00, —6) U (0,1/0%),
§(£h,2 —fh,l) =

Jﬁx—1 if h?uj , € (-6,0).

We can further show that

ih, 1—h2u2 ,/12 .
\/7]?7_: ihjin, ey f Hhe! y {+1 if h2u3 , € (—o0,—6)U(0,1/0?),

1+ h2u3 ,/6 —1 if hui, € (=6,0).

Combining it with (£.11]) leads to (#.19). The same argument using ([4.22)) instead
of (4.21) can show (4.20) and the proof is completed. O

4.3 Discrete PML operator and its matrix representation

Since the sesquilinear form bpyp(-,-) is coercive in ﬁé((]pML) X ﬁ(}(QPML) as
mentioned earlier in Subsection , for g5, € fon the problem

bpmL (uh, ’Uh) = 0 for all vp, € ‘7-(}2LPML (4.24)

with up, = g, on Iy has a unique solution u;, € V(’}PML, where XN/!}ZLPML is the finite
element space of functions vy, in VgpML vanishing on I'p. Thus we can have an
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extension operator Sh . VI'{) — VgPML defined by Sh (9n) = up, the solution to the
problem ({4.24)). Analogously to the continuous PML operator Tpyr, defined as the

o . h h h
variational sense ([2.6), we can define the discrete PML operator Tpyy, @ Vi, — VT,
such that

(TenLgns vn) ry = —bemr (8™ (g1), S (vy)) for vy, € V. (4.25)

Now, the finite element approximation w; € Vg to the continuous problem
(2.4) is obtained by solving the problem

bin, ) = (f, ) g for o, € V2.

Then it can be shown that the restriction of 4; to 2 is equal to the solution
u§® € VB to the problem

bh(uzz7vh) = (fv Uh)_() for Vp € V}Z—L»

where
B (upyvi) = (Vun, Vo) o — k2 (un, on) o — (Toaw (un ), vn) o -

We remark that the discrete PML operator can be defined on I'j for j =1,...,J-1
for the absorbing boundary condition.

In the rest of this subsection we will study the matrix representation 71, of
the discrete PML operator Tiyy,. Noting that the triangulation Tpa, O 2pMr, is
defined analogously to that for £ with N, subintervals of —3 < z < 0 (N, = 8/h),
we define the subspaces Vlfi, o of finite element functions in V}}PML vanishing on all
nodes outside of {—gh} x I" for ¢ = 0,..., Np as done in the preceding section.
Here we abuse the notation of the symbol V}’q used for finite element spaces on
2 since the meaning of the symbol is clear from context. Then the coordinate
representation 4y = (i, - - ,ﬁh,Np) of uy, to the problem satisfies three
term recurrence

— BpmLip,g—1 + 2ApMmLin,g — BpvLin,g41 = 0 (4.26)
for ¢ =1,2,...,Np — 1, and the boundary condition on Ip
Nr
. . 0 2
Up,0 = gn = Z“h,0¢h,é (4.27)
=1

where g, is the coordinate representation of g; and
1 2 1 2
Apmr, = ;Am + 00Ay — k®00Ao, BpymL = ;Bx + o0By — k00 Bo.
0 0

Since 1+ h203p274/6 # 0 for all £, we can prove that the generalized eigenvalue
problem for the matrices Apyr, and Bpyp, has a full set of eigenvectors in the
same way as in Lemma [{.2]



24 Seungil Kim, Hui Zhang

Lemma 4.5 The generalized eigenvalue problem
ApnrLé = nBpuLo (4.28)

has the eigenvectors (ih’g for eigenvalues

fort=1,2,... ,Np.

The characteristic equation &2 — 2n,, ¢§+1 = 0 has two distinct solutions, one of
which is smaller than 1 in magnitude, which is the same effect as PML does in the
continuous level, that is, transforming propagating modes to evanescent modes.

More precisely, we set
Ept = pe +sgn(ph )\ /n2,—1 . (4.29)

Here /2" is the square root function with branch cut 0 < arg(z) < 2= satisfying
Vzh =z for 3(2) >0 and z = —/z for 3(z) <0. (4.30)
By observing that
S(np,e) > 0 for ,ui,g <0 and S(n,,) <0 for ,LL%L’g > 0,

|zf\/2271*| < 1for (z) >0 and \z—l—\/z?fl*\ < 1 for $(z) <0,

we find that £, ; is the solution to the characteristic equation such that [, ;| < 1.
Moreover, &, o can be written as

h2u2 o2 ) h2u2 o2
1,%4_””%7@00 1,%
gp,f = h2n2 o2 (4’31)
14+ N)é,e 0

Now we have the solution formula satisfying three term recurrence (4.26]), which
is given in the following lemma.

Lemma 4.6 Suppose that —BPML’lAI«h7q—1 + QAPMLﬁth — BPMLﬁh7q+1 =0 forq =
1,2,...,Np — 1. Then ty, 4 for ¢ =0,1,..., Np is of the form

Nr

Up,q = Z(azfz,g + M;E)ésh,z (4.32)

(=1
for constants ay, By € C.

Now, we are ready to find the matrix representation T, of the discrete DtN
operator TP'}ML.
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Lemma 4.7 Let Ty, be the discrete PML operator defined by ([£.25). Then for Up,0
expanded as ([E.27) the matriz representation of Ty, is given by

Np
Twine =Y Ap.etihobne, (4.33)
=1

where

2N
. W2oguie 1 —&e"
Ape = tpne\[ 1 = —5 N, -
1+ gp,l

Proof We first note that the coordinate representation u; of the solution wj, €
V!}ZLPML to the problem (|4.24)) satisfies (4.26]) and hence the homogeneous Neumann
boundary condition on I's = {—8} x I', —=BpmLin,N,—1 + ApMmLUp, N, = 0, can be
read as a@gj — ﬁgﬁ;é\]p =0for{=1,...,Np by Lemma@ Thus we can use the
boundary condition (4.27)) to obtain

N 2Np ~0

Up, 0 €pt" Uho

Q= 55> and By = TN,
I+ 51?75 1+ gp,lf

Since the matrix representation 74, of the discrete DtN operator Ty, sat-
isfies
“h . . R
MrTpmLtn,o = —ApMLUp,0 + BpMLUA 1,

by using Lemma [£.6] we have

Nr
- N 1 _ .
MFTIQMLuh,O = Z i(gp,l - Ep,é)(atz — Be) BpML®h ¢
=1
Ny LN (4.34)
1 _ T Spl g n
= Z g(ép,z - fpé)iggvp Up, 0 BPML®h, ¢-
(=1 1 + £p,€
A simple computation using (4.31)) shows that
1 B R ) h203u3 , R
E(Ep,l - €p,§)BPML¢h,z =ippe\[1— 19 ~Mronpe
and hence we have the formula (4.33) for the discrete PML operator. O

4.4 Error propagation in the discrete level

We consider the discrete local problem (4.3)) posed in the reference domain £2 to
find 4y, = (dpo-..,0n,N,) € CNrx(NeH1) gatisfying

— By, g1 +2A0p g — Bip g1 =0forg=1,2,...,Ns — 1 (4.35)
and the boundary conditions

oy,
ov

oy,
ov

= TP\ ino + i on I, and = Thyrin N, + 90 on Tk (4.36)



26 Seungil Kim, Hui Zhang

with 4% and 48 € CNT'. Once the problem (£.35)-(.36) is solved, the outgoing
data corresponding to (3.10) are defined by

L My an R My an
’Yout:_W_TPMLuh,O and Aoy = — £ — TPMLUR, N, - (4.37)

Remark 4.8 We will assume Jg = & in the analysis of the rest of the paper since we
rarely encounter the case Jg # &, that is hz,ui’é = —6, in the most common situation
in reality. However, one can easily show the double sweep DDM for the modes with
(e Jp # D converges as well.

Recalling the solution formula under the assumption Jg = @, for & =
Zévzfl 'yilr‘qugh’g and 'yin E fym écﬁh ¢, and using the matrix representatlons of
discrete normal derivatives and discrete PML operator given in Lemma [.4] and
Lemma @ we solve the equations for ay and By, and then use them in the
equations @ for the outgoing data as done for in the continuous level
problem to obtain that

[“ﬁut,e] _ [%,e Ch,e] PiLn,z] (4.38)
AT Che ene] [ o]’
where s N .
Ch = ( - Qh 2)5}12 enp= (1 - gh’gS)Qh,Z (4 39)
B R/
Here Qp, ¢ is the discrete reflection coefficients for the /-th mode defined by
\/1_ h? “he _ \/1_ hQUUH’hZ - 5pzi
Qg = —Amt T Ap ¢ _ R (4.40)
he = ) .
_Ahf_ \/1 h“hz \/1 h2ogu7 , 1— Epe
— —_——a — - 12 1+£2Np

Denoting z = hpuy, ¢, by Taylor’s theorem one can show that the discrete reflection
coefficient Qj, ¢ satisfies the asymptotic behavior

1
Qne = 51— 8)2" =6} + OG>, h)I) (4.41)

for small z and §2]X‘°.

From now on we will estimate the entries ¢, , and ¢, ¢ of the error propagation
matrix as well as the discrete reflection coefficient Qy, , in more detail. Since Q¢
depends on |§p7g\2NP, we begin by estimating \§p7g|2NP. We let w = hup o0 and

write &, ¢ in (4.31) as the function of w

1— % 4wy /1%

2
1+

§p,€ = X(w) =

Clearly, we have |x(w)| < 1 from the definition of &, = x(w) and the asymptotic
behavior of x(w) holds
x(w) =14+ iw+ Ry (w) (4.42)

with Ry (w) = O(w?) for small w.
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Due to the convergence theory of finite element eigenvalues, for small 0 < e, <
min We can find a positive constant hg such that if 0 < h < hg, then the compact
sets [0, uy — ex] and i[0, fin 41 — €x] do not have discrete wavenumbers py, , of any

modes. The decaying property of §;]Zp is presented in the following lemma, whose
proof will be given in Appendix.

Lemma 4.9 For any € > 0 there exists 0 < h1 < hg such that if 0 < h < hy, then
16p,el* < (14 )e ™27
forallt=1,...,Np.

From Lemma and the asymptotic behavior (4.41) of @, for small z and
5;5" , we can easily show that the discrete reflection coefficient @, o can be asymp-

totically reduced to a constant multiple of e 20upB provided that h and z are small
enough.

Lemma 4.10 Let 6, := /|48/(1 — a%)|e_a‘“8. Then it holds that

|Qno| S e 27mP (4.43)

for 0 < h < h1 and |hpp o] < 0z.

We may need to choose small h so that the discrete reflection coefficients Qp, o
for all discrete propagating modes fulfill the condition , that is, hupe < 02
for all pp, > 0, however we do not introduce another bound of h for simple
presentation and assume that if h < h1, then hyy, o < 65 for py , > 0. We define
£x > N such that if £ < £, then |hup, o] < 02 but |hup ¢| > 52 otherwise, and note
that /. increases to N as h tends toward zero.

Remark 4.11 We further assume that h1 is small enough so that the ¢-th evanescent
modes corresponding to pp, ¢ for £ > £y are sufficiently small, |§}]LVZ| < 1. Indeed, as
inferred from the graph of € = n+ \/n%2—1 as a function of v = (h,u)2 < 0 for
evanescent modes in Fig. @ we have |§p, ¢| < C¢ < 1 for some C¢ depending only on J

when |hpp, ¢l > 6z, from which it follows that |§}]LV2| = |§féh| — 0 as h — 0. Thus we

can assume that h1 is small enough so that if 0 < h < hy, then |§]sz2| < 1 for the £-th

evanescent modes with £ > l«. The exponential decay of 5,11\/2 is engaged significantly
in the error analysis because the discrete reflection coefficients Qp ¢, satisfying the
asymptotic formula

Q4| \/1+x—\/1+m08 (4.44)
htl = .
\/l—i—x—l—\/l—i—wag

with x = (h,uhx)z/lQ resulting from (4.40) for sufficiently small 512)1;[;7) get worse with
increasing £.

Next, we estimate the entries of the error propagation matrix for small z =
hitp -
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Lemma 4.12 Assume that 0 < h < hq1 and £ < {«. Then it holds that

len,e| < Cqe™2P

Ch| < 1+ Cge™onP
for a positive generic constant Cy.

Proof Due to the fact that [Qp, ¢| < Ce 218 « 1 and |§}]LVZ| < 1, we use the Taylor
expansion with respect to @y, ¢ to obtain

165 ‘ N
== +o@t | < ¢
1- Qi’eﬁif\f '

1-Qj

= ‘1 + O(Qi,z)’ <14 Cetons

N2 2N,
1 h,égh,é

for a generic constant C. Then, the required estimates result from the definition
(4.39) of ef, ¢ and ¢p, ¢ and the above inequalities. O

The next lemma deals with the case of |z| > ., which can be proved in the
similar way by using |§,ILV;\ < 1 instead of |Qp, o] < 1.

Lemma 4.13 Assume that 0 < h < hy and £ > {«. Then it holds that

lenel < (14 CI1E Y DI@n el

2N,
Chel < ClEj e

for a generic constant C'.

5 Double sweep for the finite element problem

In this section we analyze the convergence of the double sweep DDM applied to
the Helmholtz equation discretized by the finite element method.

5.1 Embedding operators

Let I'™ and Ip, be the index sets of nodes on £2; \ (I'; UT;_1) and I}, respectively.
Then every function in V_th is obtained by restricting a function in V}} to £2;, that
is, for vy, € ijj, we can write vy as a linear combination of nodal basis functions
i in V5,

vn= Y vnavile, + Y vhavile, + Y vhivile, (5.1)

i€l i€lr; i€lr;_,

for v, ; € C.

We remark that the double sweep DDM in the continuous level studied in
Section [3] produces a convergent sequence of approximate solutions, that lie in
H'(£2;) locally but are discontinuous on the interfaces I'; in general. Because local
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solutions of each iterate are defined in mutually disjoint subdomains, they can hold
data %L and WJR to be transferred to neighboring subdomains on interfaces. In the
double sweep DDM for the discretized problem, we will find a sequence u}’ in
vVl c HY(02) converging to u§®, that has one trace instead of two different traces
on I'j, but holds correct outgoing data for the next iterate. We can do this by
updating each iterate in a special Way To this end, we need restricted embeddings
of VQ into V&. We define IEF VQ - Vhfor1<j<J—1and ]EB VQ - Vh

for 1 < j<J by
> vnipit Y vhavi+ Y vpapi for j=1,

» ielin i€lr; i€l
Ej (vn) =
J
Z Vn,ii + Z Vh,iPi for2<j<J—1,
i€l i€l
B .
Ej (vn) = Z Vh,iPi + Z Vh,i i for1<j<J
ielim i€lr;

for v;, € V(}}j of . We note that the operator Ef defined in Vf}j keeps the
boundary values on I'; but not I';_; (except for j = 1), which will be used for the
forward sweep. In contrast, the operator IEB defined in VQ keeps the boundary
values on I'j_; but not I';, which will be employed for the backward sweep.

5.2 Algorithm for the convergence theory

In this subsection we discuss the double sweep DDM algorithm for the discrete
problem. We first note that the discrete incoming data 'y;I;J and 'Y}lij corresponding

to 'yJL and 7? for the continuous level can be computed theoretically as follows.
Assuming that uj, € VQ is known and denoting by uh ;j the restriction of u, to £2;
(the symbol uy, 4 has been used for a function in qu in Section |4 I but uy, ; in this

section represents a function in VQ],) so that uy ;1 € Vﬂj_l and up j41 € vh
are given, the incoming data coming into (2; are determined by

J+1

o"u My, ;
L hj—1 h R hoj+1 h
Vh,j = Tuj —Teme(Unj—1), Thy = 871/; — Temw(up, j4+1) (5.2)

on I';_; and I}, respectively.

Rm and 'yL "™ the discrete bound-

, respectively,

In the double sweep 1terat10n we denote by v,
ary data corresponding to v%™ and ™™

(Rm R,m Lm _Lm

R,m R, R Lm _
h Yha o Vhe 7'“7711,,?11)60% ’Yhm*(’YhQ 1 Yn3 7--~”YhJ)eGhv

where GJ := sz_l ij and GJ := H;:2 V}Lj . Then the discrete double sweep
DDM keeping correct traces on the interfaces by using proper embedding operators
defined in Subsection can be given as Algorithm 2.

In this algorithm it is not computationally cheap to extract incoming data
'yk ]m and 7h ™ by using the formulas since the discrete PML operators are
involved. However Algorithm 2 is needed as it plays a crucial role in the conver-
gence analysis. An efficient way to avoid computing fyh’m and 'y,fi’jm directly in

numerical implementations is discussed in [19].
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Algorithm 2 Double sweep DDM of the discrete level problem

. — 0 h
1: Set m = 0 and choose any u, € V3.

R,0 R,0 R,0
2: Compute v, = ('yh,l e 77h,J—1) from u%
3: while the residual is larger than given tolerance do
4: Set uzﬂ'l — upt. > Forward sweep
5 for j=1,2,...,J—1do
6: i. Compute '\/}I:Jm from uhmj_ll with V}I;,’In =0.
7

ii. Solve the local problem for wy, ; € ng

b (wh, g, vn) = (f,vn)0;

5.3)
L, R, (
+ (o) + (" o)y for vy € VL
8: iii.Update the values of u;n+1 corresponding to nodes in I;”UIFJ. by using Ef (wp,j)-
9: end for
10: Compute '7,11"(7;1 from “Zl-}_il > backward sweep
11: for j=J,J—1,...,1do
12: i. Compute 'yg“jerl from u;lnjil with 72{’}"+1 being ignored.
13: ii. Solve the local problem (5.3) for wy, ; € VA with 75’;” replaced by 75’;”+1.
i ) )
14: iii.Update the values of u;ln+1 corresponding to nodes I]’:“ulpji1 by using IEJ-B (wh,j)-

15: end for
16: Set m < m + 1.
17: end while

5.3 Convergence of the discrete double sweep DDM

In this subsection, we analyze the convergence of the discrete double sweep DDM
as the main result based on the reflection coefficients studied in Subsection 4l
The main result is that the double sweep process can be viewed as a contraction
mapping of the boundary data coming from the right boundaries of subdomains
and its contraction factor is determined by the maximal reflection coefficient de-
pending on which reflection coefficient of £ < ¢4 or £ > {4 is dominant. It turns out
that the number of iterations can also increase logarithmically with the number
of subdomains if the reflection coefficient of ¢ < ¢« including propagating modes
is larger than the other.

As the continuous level problem, we estimate the discrete forward sweep op-

erator Fy, : 75,7;@ — 'yk’m and the analogous one for backward sweep By, : 72,m —

7,?’"”1. We proceed the convergence analysis for the double sweep operator by
splitting two cases depending on whether the mode index ¢ is larger than /.. For
Yh € VI@ we let v, < and +, > be consisting of the Fourier components of ~;, with
¢ < £y and £ > L, respectively. Also, v, < and 7, . are analogously defined for
vector functions. B

5.83.1 The case of £ < Uy

In this case, we use Lemma instead of Lemma in the arguments used for
verifying that B o F is a contraction mapping in Subsection [3.3} and hence we are
led to the following lemma showing that the double sweep operator in the finite
element problem serves as a contraction mapping for modes of £ < /.
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Lemma 5.1 Assume that h < h1. Let cqp, be a positive constant such that cop(J—1) <
1 as well as (2Cyc3;, + C3cy,)(J — 1) < 1. If the PML parameters are chosen such
that e~ 2718 < Con, then for modes such that |hup, ¢| < 6z it holds that

L,m —20,08 1 R,m
H’Yhé ||Hh—1/2(p) < Cs(J —1)e " H'Yh’g ||Hh—1/2(1—s)7

R,m+1 —2 R,
I € Wy < Co( = De > 2 g

for some generic constant Cs > 0 that may depend only on k.

Proof The estimates are the results for the discrete level problem analogous to
those for the continuous level problem given in Lemma [3:4 Lemma [3.5] and
Lemma In order to establish the estimates, we have only to follow the same
lines used for the three lemmas for the continuous level problem by using Lemma[4.12]
instead of Lemma [3.2] once the discrete version of the stability corresponding to
is provided. Thus, it suffices to prove

R,m+1 < L,m
”’yth—LS”H,:]/Z(F) S |wh,J7S ‘|H;l/2(F)'

To this end, let 2Py, = (z7_1 — 8,27_1) x I' be the PML region for the local
problem posed on {2; and 4y, ; be the solution to the problem in £2; defined by

2 attached to QéML with 'y,I;’f,"< given on the transmission condition on I'y_1,

ay (i, 7, 6n) + bbnan (i, 1, dn) = (V<> $n)r,_, for all ¢, € Vﬁj, (5.4)

where by (-, ) is defined analogously to bpyy(-,-) and V!%J is the finite element

space on £2;. Then the restriction up, g of Gy, y to £2; satisfies the stability result
Lm
Huh,J”Hl(QJ) S ‘|7h;J,S||H}:1/2(F). (55)

Using (4.18), (4.25)), (5.4) and (5.5), we have
(e bn)ry | = lag (i, g, én) — biaw (iin, g, ¢

L, L,
= |2aJ(uh,J7 ¢h) - (’Yh’zlgaﬁf’h)FFJ 5 H’Yh:]ilg||Hh*1/2(1-*)||¢h”H1(.Q)~

Utilizing a bounded extension operator from VI]}Jﬂ to Vf%z and (4.2), we obtain
that ‘

R,m+41
e PR e L U S
_1.<llg=1/2 <l gp—1/2
hod =1 TH, ) 07'5<25;LEV1£L171 HﬁbhHHl/Z(I’) ~ W, g, < TH ()

which completes the proof. ad
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5.3.2 The case of £ > s

In this case we have |5 ¢| < 1 by Remark and Lemma We write the
forward sweep operator as a matrix form

Lm __ = R,m
’Yh7g —Eh,fuh,l’)’}hg ) (5'6)

where 5}, 4 is the (J —1) x (J — 1) Toeplitz matrix given by with ¢, replaced
by (p.e-

For the analysis of the backward sweep operator, we need to investigate error
propagation arising in 2;. We conduct the similar computation used for
with the transmission condition on I'; replaced by the homogeneous Neumann
boundary condition to obtain

2N,
,m+1 Qh,é + Eh’f L,m
J—

_ = L,m
J—1,4 = oN. Th,Je = ErtVp g0

R
h
’ L+ Qn &y

~

with [}, ¢| = |Qpe| + O(\&;QLJZSD. Inductively, it can be shown that

R, o s =T L,
’YMZnH = diag(eh,e; - €n,esEn,0) SneYiy - (5.7)

Combining (5.6) and (5.7]), we get the action of the double sweep operator

R,m+1 __ di ~ =T = R,m
Yh,e = Zag(gh,b <oy EhLs 5h,£)5h,£~h,l~h,€"/h’g .

Let us define

Q= %aexﬂﬁh,zlﬂfh,el\e% [€n,elllZn,elle2}- (5.8)

By examining the smallest eigenvalues of E{ZI (E};l})* it can be shown that ||Zp, ¢ll2 <
1+ O(|¢h,el), and hence it follows from Lemma that

~ Imax .
aq ~ max{|Qn.o|}

The estimates of the double sweep operator for modes of ¢ > ¢, are given in

the following lemma resulting from (5.6)) and (5.7)).
Lemma 5.2 Assume that h < h1. For £ > £, it holds that

(S < aglvi Tl
7h,> H;l/Q(F) = qQ 7h7> H;l/Q(F)’

R,m+1 2 | R,m
H7h7> ||Hh—1/2(1—s) < QQ||7}L7> ||H;1/2(1—~)'
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5.8.8 Convergence

Here we combine all estimates in the above to have the contraction property of
By oy, : Gﬁ — Gl,j. We introduce contraction factors

q = max{qq,Cs(J — e 29+P} and = max{q%,Cg(J —1)e20uPy

where the maximal values are taken among all modes involved in traces of approx-
imate solutions generated by the double sweep DDM.

Lemma 5.3 Assume the conditions in Lemmali 1. Then it holds that

Lm R,m
”'7 || ‘;1/2([’) S q“’)lh ||H;1/2(F)7 (59)

R,m—+1 R,m
H ||Hh—1/2([!) S t||")’h ||H;1/2([‘)‘ (510)

Proof The orthogonality of the basis leads us to

R,m+12
[y ™ |

R,m+41
R gy = RS

R,m+41 H

+ s

() oy

By invoking Lemma and Lemma we have the contraction property (5.10))
of the double sweep operator,

Rm+1“ ’ITL||2

% a7y

2 R,m 2 R,m 2 .2 R,
';1/2(1—‘) S T (||7h7§ ||H’:1/2(1—‘) + HFY]-L7> HH}TI/2(F)) =t H’Yh
The proof of (5.9)) can be done in the same way and the proof is completed. O
Finally, we can establish the convergence of the discrete double sweep DDM

in H'(02).

Theorem 5.4 Suppose that f = 0. Let u}' € VQh be the m-th iterate of the double
sweep DDM for any ug € V(}}. Assume that 0 < h < h1 and cqp, is a positive constant
satisfying coh(J —1) < 1 as well as (204c3;, + C3cgp)(J — 1) < 1. Let K]R for
j=1,...,J —1 be the set of all tm’angulations T € Tg; that have at least one vertex
on I'; and denote QR = 0\ (U7 i1 UreKJR 7). If the PML parameters are chosen such

that e~ 27n8 < cqp, then it holds that
I e omy S (2 + a)e™ up i (o)-
Furthermore, we have the L?-norm convergence in the whole domain (2,
lui 22y S €+ Q™ lupllg (o)

Proof Let a@," = (up'y,.-. Uy y) € HJ] 1 V(’} , where ay,"; is the solution to the local

problem in {2; with the boundary data 7L =1 and 'yRm, obtained during the

backward sweep. By the same argument used for Theorem [3-8] with Lemma
and Lemma replaced by Lemma we can show that

L, 1
V& Y S IV ™ gy + 175

S (e +a)lv,

;1/2(1_,)

B ey S QP iR o)-
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R,0 ~ ~ o
Here we used ||, || S ll@g v and ||, |lv = |luj,

H’:I/Z(F)
|ii(n) in the last inequality. Since @j’; = up'; and vy, = up'; —wy'; for j =
1,...,J —1is supported in U . grT, it is obvious that
J

-1
|

lub e comy < v S (e 4 a)e™ gl o)

In addition, a simple computation gives

2 2 h 2 h 2
||Uij|\L2(Qj) = E thm,jHLZ(T) = E g”vi??,j“m(e) = g“”hm,jHHl/z(pj)v
T€K? eéﬂy

Since the trace of u'; on I'; coincides with that of ap'; . 1, it is obtained by a trace
inequality that

J—1 J—1

2 ~ 2 ~ 2 ~ 2
D o, <2 OhﬁbﬂHdmuy)+WWZZ+1HHU2HH)JSHUWHV-
j=1 j=1

Therefore combining the above estimates gives
J—1
2 ~ 2 ~ 2 2
lun'llz2c0) < llanslz2c0) +2 Z (Hu%HLz(Qj) + HU%HL%Qj))
j=1
~m 2 2 2(m—1)), 02
SR < e+ )" fup 3 o)
which completes the proof. O

As a consequence of this theorem, since the contraction factor for the propagat-
ing modes depends linearly on the number of subdomains, the number of iteration
increases only logarithmically with respect to the number of subdomains.

6 Numerical experiments

In this section, we provide numerical examples illustrating the convergence theory
studied in the preceding section. The domain 2 in this section is set to be a
rectangular one and the left-side boundary of (2 is assigned for PML and the
homogeneous Neumann boundary condition are given on all other boundaries. The
problem is discretized with the help of the finite element library deal.Il [2] and the
solution is approximated by using continuous piecewise bilinear finite elements.
The double sweep DDM is applied to the finite element problem with the stopping
criterion that residuals relative to the initial residual are less than 107°.

6.1 Dominant contraction factor

In the first experiment, we discuss which contraction factor between Cj(J—1)e™ 2715
and q% is dominant provided h is small enough. The domain (2 is the unit square
2 =1(0,1) x (0,1) and the finite element mesh nodes are deployed with h = 1/400
on the domain. We take somewhat large 8 = 0.1 (which results in large N, = 40)
in this example to avoid excessively slow convergence when qé is dominant. For
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Fig. 3: ity vs. k when J = 5, o, = 20 and 8 = 0.1 with e 2%:P ~ 0.0183 <
max{|Q7 ,I} ~ ¢4 In (a), the blue dash-dot curve : ity for with zero initial
iterates; the red dash curve : ity for random initial iterates.

both cases, the PML parameter o, = 20 is taken so that the continuous reflection
coefficient is bounded by e 27## ~ 0.0183.

We consider a source problem with a compactly supported L? source function
f defined by

(1 [|(z,y) — (0.1,0.2)]2 < 0.05,
flz,y) = {0 otherwise (6.1)

and the double sweep DDM with J = 5 starts with zero or random initial iterates.
Fig. |3| (a) reports the number of iterations, denoted by itx, of the double sweep
DDM vs. wavenumbers from 5 to 100. The blue dash-dot curve represents ity of
the double sweep DDM starting with zero initial iterates, and it shows that at
most five iterations are enough to obtain the desired approximate solutions for all
wavenumbers except for k = 85 and it appears that the number of iterations does
not depend on wavenumbers. According to Fig. (c), it looks that the peak at
k = 85 is caused by the fact that the mesh size h = 1/400 is not small enough for
Qn,¢ of near-cutoff modes for £ = 85 to drop down to the level of e~29u8 ynlike
cases for other k shown in Fig. [3| (b), for example k = 20.

The residuals of the m-th iterates are evaluated and they are given in Fig.|4|(a).
We also estimate the numerical contraction factors t;, (the ratio of two consecutive
residuals) shown in Fig. 4| (b), where the left y-axis represents the contraction fac-
tors and the right y-axis stands for the values v,/ e~2948  constant multiples of the
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Fig. 4: Residuals of the m-th iterate and numerical contraction factor v; obtained
by the ratio of two consecutive residuals.

maximal continuous reflection coefficient. They exhibit that the sequences gener-
ated by the double sweep DDM converge linearly with contraction factor which
are constant multiples of the maximal continuous reflection coefficient ranged be-
tween 0.2 and 4. For k = 85, the constant multiple is computed with respect to
the peak 0.2793 in Fig. [3| (c) instead of e=27##. Thus it can be concluded that
if support of the source function f is located away from interfaces of subdomains
and the double sweep DDM starts with a zero initial iterates, then the convergence
in these examples is controlled by the maximal continuous reflection coefficients
since the residuals include only propagating modes and relatively slowly decaying
evanescent modes in their traces on the interfaces of subdomains.

On the other hand, the red dash curve in Fig. [3| (a) shows it of the double
sweep DDM starting with random initial iterates. Convergence of this case is slow
compared with that of the double sweep DDM with zero initial iterates but they
still converge linearly (see Fig.[d](c)). In case that q < Ct, Theorem [5.4] shows that
the number of iterations ity required for residuals relative to the initial residual

to be within given tolerance 7 can be estimated by m, := w, where r¢

stands for the initial residual. Interestingly, the shape of the plot of ity looks
similar to that of m, given by the black dash-dot curve in Fig.|3| (a) as a function
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of wavenumbers when v = qé and 7 = 107°. Thus, by observing that e 2718 ~
0.0183 < max£{|Q;2L’@|} from the solid green curve in Fig. (a), the slow convergence
of the double sweep DDM is explained by the existence of fast decaying evanescent
modes in random initial iterates whose discrete reflection coefficients are dominant.
This is also supported by Fig. 4| (d) demonstrating that the numerical contraction
factors coincide with the actual contraction factors governed by man{|Q%h = qé
in theory. Another interesting observation is that the performance of the double
sweep DDM with random initial iterates is different wavenumber-by-wavenumber
as opposed to that starting with a zero initial iterate. In fact, the discrete maximal
reflection coefficient depends on op as shown in the asymptotic formula (|4.44]).
That is, the performance of the method depends on the relative position of k with
respect to the distribution of the cross-sectional eigenvalues. In particular, when
there exist near-cutoff modes corresponding to puy <« 1 or fiy41 < 1, which are
known to be troublesome for PML, the performance of the method is deteriorated
and this is supported by the plot of max{,ux,l,ﬁj_vﬂ_l} given in Fig. 4| (d) showing
the same shape as that of the maximal reflection coefficients.

6.2 Influence of the transmission condition based on PML

The next experiments are to examine the influence of the transmission conditions
depending on two PML parameters o, and 3. We take f given by in the
domain 2 = (0,1) x (0,1) and set J =5 and h = 1/400.

Case I: varying o, with g = 0.1 fixed.

For the first case, we examine the performance of the method with different
values of o, with 8 = 0.1 fixed. When the double sweep DDM is fed a zero vector
or a random vector for an initial iterate, we obtain the results presented in Fig.
(a) and (b), respectively.

In case of the double sweep DDM with zero initial iterates for o, = 10, 15 and
20, we see that ity decreases monotonically with increasing o,. In fact, when h
is small enough and t = Cs(J — 1)e27## | the contraction factor decreases as ;.3
increases.

Next, we compare the performance of the double sweep DDM starting with
random vectors when o, = 15 and 20 with g = 0.1 fixed. When a random vector
is chosen for the first iterate, qé is a dominant factor as seen in the experiments
of Subsection Interestingly, Fig. c) and (d) show that |Qy, ¢| near the cutoff
index N becomes smaller as we take larger o, as expected, however the values of
|@Qp,¢| are arranged in the reverse order far away from the cutoff index. This can
be explained by examining the asymptotic formula of the discrete maximal
reflection coefficient. Thus, if qé is dominant over C(;(Jfl)efwﬂﬁ for each oy, then
ity decreases with decreasing o, which can be observed for most wavenumbers
except for k = 65, 90 and 100 in Fig. 5| (b).

Case II: varying 8 with o, = 10 fixed.

For the second case, we examine the performance of the method with different
values of 8 with o, = 10 fixed. The results obtained with zero and random initial
iterates are presented in Fig. |§| (a) and (b), respectively. When the double sweep
DDM starts with a zero vector for § = 0.1, 0.2, 0.3 and so the contraction factor
t is governed by the term Cy(J — 1)6720’“’87 ity decreases monotonically with
increasing 3 as shown in Fig. |§| (a). When the double sweep DDM starts with a
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Fig. 5: ity vs. oy with 8 = 0.1 and J = 5. In (c) and (d), plots of |Qy, | for k =
30. The horizontal lines in the plots represent the maximal continuous reflection
coefficients e 27## for the PML parameters o, and 3 corresponding to the same
color and the same line style.

random vector, however, qé can be dominant over Cs(J — 1)6726“’8 . According to
Fig.[6] (c) and (d), the maximal discrete reflection coefficients do not depend on 3,
which is justified by the asymptotic formula independent of 3 for sufficiently
large 3, so that ity can be constant for all sufficiently large § if the contraction
factor v is controlled by qé. These results can be observed in Fig. El(b), where the
red dash-dot curve of 8 = 0.2 coincides with the blue solid curve of 8 = 0.3 for all

k except k = 85 and 100.
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Fig. 6: it vs. S with o), = 10 and J = 5. In (c) and (d), plots of @}, ; for k = 30. The
horizontal lines in the plots represent the maximal continuous reflection coefficients
e=2948 for the PML parameters o, and § corresponding to the same color and
the same line style.

6.3 Dependence on h

The next experiment exhibits the behavior of the double sweep DDM with respect
to h. Here we consider two examples. The first one is for h-independent perfor-
mance of the double sweep DDM. We take 2 = (0,1) x (0,1) and set o, = 20,
B = 0.1. The domain {2 is decomposed into 5 subdomains, i.e. J =5 and so H = 0.2,
and the finite element method with A =1/100, 1/200 and 1/400 is applied.

As for the behavior of @}, ¢ with respect to h, we see Fig.[7| (b) and (c) showing
that the discrete reflection coefficients for each £ get smaller as h decreases, however
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Fig. 7: ity vs. h for random initial iterates with ¢, = 20, 3 =0.1 and J = 5. In
(b) and (c), plots of Qp ¢ for k = 30. The horizontal line in the plots represents
the maximal continuous reflection coefficients e 27+,

the maximal discrete reflection coefficients for different values of h with o, and
fixed do not have noticeable difference. This is because the upper bound of z in the
right hand side of is independent of h. The double sweep DDM with random
initial iterates produces the results in Fig. (7| (a), showing that the convergence of
the double sweep DDM is governed by qé ~ maxe{\Qi,d}. Since man{|Q%7Z|} do
not have any significant change for different » = 1/100, 1/200 and 1/400, only
one plot for h = 1/400 is reported with its corresponding reference number of
iterations m, in Fig. []

In contrast, the convergence of the double sweep DDM may depend on h if
approximate solutions includes only a partial set of modes such as propagating
modes and slowly decaying evanescent modes. As an example, we take the domain
2 = (0,0.2) x (0,1) and decompose it into 5 subdomains so that J = 5 and
H = 0.04 and use h = 1/200, 1/400 and 1/800 for finite element approximations.
Assume that f is a point source located at (0.05,0.5). By using PML with o, = 30
and 8 = 0.1, we obtain ity shown in Fig. [§[ (a) revealing that the performance of
the double sweep DDM is improved as h is getting smaller. In order to examine
the convergence with respect to h in more detail, we estimate the convergence
factors for k = 10 in Fig. [8| (c), exhibiting that numerical contraction factors
are approximately 0.7828, 0.5399 and 0.3222 for each h respectively, compared
with maxz{|Q27£|} ~ 0.7936. Since reflection coefficients for propagating modes
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Fig. 8: ity vs. h for zero initial iterates with o, = 30, 8 =0.1, J = 5 and H = 0.04.
In (c) and (d), residuals and estimated number of modes in residuals for k = 10.

are less than 1072 for all h and they are significantly smaller than the numerical
contraction factors calculated as above, we infer that the contraction factor v
is determined by qé. In addition, according to Fig. 8] (d), we find that there are
roughly 140 ~ 180 modes involved in traces of approximate solutions on interfaces.

At last, it is worth pointing out that the modes involved in traces of approx-
imate solutions on interfaces are related with the distance from the source to
interfaces. If a point source is located farther from interfaces of subdomains, then
more evanescent modes emitting from the source can diminish on interfaces and
the contraction factors become smaller, which results in the smaller numbers of
iterations. For example, we consider a point source located at (0.02,0.5). In this
case the distance from the source to the interfaces is 0.02, which is greater than
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J Np 5 6 7 8 9 10 11 12 13 14 15
4 13 10 9 8 7 6
8 18 15 13 11 10 9
16 25 14 12 11 10
5 16 13 11 10 9 8
10 44 16 13 12 10 9
20 22 15 13 11 10

Table 1: ity with zero initial iterates for k£ = 80, h = 1/400. Here o, is chosen such
that e29#% ~ 0.0183 for varying Np.

50 100 150 200 250 300 350 400

¢
(2) Q¢ for 0 < £<60 (b) Q¢ for 60 < £ < 400

Fig. 9: Discrete reflection coefficients @y, ¢ for k = 80 with h = 1/400, 0,6 = 2.

the distance (= 0.01) from the source at (0.05,0.5). We see that the numbers of
iterations for the case of the point source at (0.02,0.5) given in Fig. [§] (b) are
smaller than those for the point source at (0.05,0.5).

6.4 Dependence on J, the number of subdomains

In this subsection we conduct experiments to see how the double sweep DDM
depends on J. To do this, we take the square domain 2 = (0,1) x (0,1) and
decompose {2 into uniform quadrilateral finite elements with h = 1/400. Through
this test, we also investigate how large the PML width g = hN, is required to
keep ity constant as J increases. The PML strength ¢y, is chosen such that the
reflection coefficient e~27## is constant for varying 3. For k = 80, the test results
of the double sweep DDM with zero initial iterates for J = 4,5,8,10,16 and 20,
are shown in Table [1} As described in Theorem when Cs(J — 1)e™ 2717 is the
dominant reflection coefficient, it is observed in Table [I] that

ity = O(In(J)). (6.2)

for each Np. Since it is of importance to understand how fast N, needs to increase
to keep ity constant with growing J in the practical use of the double sweep DDM,
we also examine N, with the same number of iterations as J increases, for instance,
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we consider ity in the cells with gradual color in Table |1, They demonstrate that
Np grows logarithmically with respect to the number of subdomains,

N, = O(In(J)), (6.3)

which has been already noticed in [36] of studying the double sweep DDM with
PML of quadratic stretching functions in the open space R2. In fact, this result
can be explained in terms of the discrete reflection coefficients as shown
in Fig. @ It reveals that Qj,  decreases exponentially for each £ as N, increases
linearly in the above the black dash-dot line representing e~ 29+# Tt means that

Np = O(In(1/r)) = O(it3"). (6.4)

This result can be found in each row of Table E| by comparing ity for the pairs
of Np, for example, (5,10), (6,12) and (7,14). Finally, it follows from (6.2)) and
(6.4) that it is proportional to In(J) and 1/Np, which leads to (6.3]) to keep ity
constant.

6.5 Experiments with respect to N, with 0,8 fixed

Next, we present some experiments in the square domain 2 = (0,1) x (0,1) of
the double sweep DDM of PML with respect to N, with 0,8 fixed. The earlier
research of the double sweeping preconditioners based on PML with quadratic
stretching functions in [12,35.36] studied computational costs of the method with
respect to N since it is preferable to minimize the computational cost by taking as
small N, as possible. Assuming that n is the number of the grid points along each
axis of the physical domain (2, [I2] shows that the double sweep preconditioning
technique requires O(Npn?) and illustrates numerical examples with N, = 10
for its efficiency. Also, in [35] smaller Np such as 5 or 6 is used in the domain
decomposition framework and the double sweep DDM with Np = 3,4 or 5 in [36]
is successfully used for coarse grid solvers in the multi-level framework. When
the domain (2 is decomposed into J subdomains of equal size, the computational
costs for one sweep are of order O((5 + 2Np)?nJ). From (6.3), it can be seen
that N, for the minimal computational costs grows of order O(In(n)). Indeed, for
the asymptotic analysis, we just replace J with eNr in the asymptotic cost rate
(%+2Np)?nJ and find that the minimal cost occurs when N, satisfies (2+Np)eV» ~
n, which shows
Np = O(In(n)) and J = O(n) (6.5)

for the same number of iterations. This result can be observed in Table [2] with o
and 8 = hNNp chosen so that the maximal reflection coefficients remain the same,
e 20uB 0.0183, for varying Np. Therefore, it turns out that the computational
cost is of order O(N;n?), which is the same order of the method studied in [IZ].

We further perform experiments of the double sweep DDM for PML with
quadratic stretching functions defined by

T 2
5o %fotdt for z > 0,
x for z <0

for the absorbing boundary condition and its analogues for transmission conditions
with og as in Subsection and compare them with those obtained with constant
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h Np 5 6 7 8 9 10 11 12 13 14
1/200 10 7 6 5 5 4 4 4 4 4
1,/400 11 8 6 6 5 5 4 4 4 4
1/800 12 8 7 6 5 5 5 4 4 4

Table 2: it with zero initial iterates for k = 80, J = 5. Here oy, is chosen so that
e2748 ~ 0.0183 for varying Np.

Np piecewise constant piecewise quadratic

k 5 10 20 40 5 10 20 40
20 6 5 5 5 6 5 5 5
55 10 5 4 4 6 4 4 4
80 11 5 4 4 5 4 4 4
95 15 6 6 6 7 6 6 6

Table 3: ity with zero initial iterates for J =5 and h = 1/400 in waveguides.

Np piecewise constant piecewise quadratic

k 5 10 20 40 5 10 20 40
20 75 38 19 10 8 4 4 3
55 37 19 10 5 6 3 3 3
80 32 16 8 5 6 3 3 3
95 48 24 12 7 8 4 4 4

Table 4: ity with random initial iterates for J =5 and h = 1/400 in waveguides.

stretching functions of this paper. We take a constant o, = 6 for quadratic stretch-
ing functions, because the stretching function is normalized by the PML width,
so that the reflection coefficient is equal to that for PML with constant stretching
functions, e~27#/3 ~ 0.0183. Numbers of iterations of the double sweep DDM for
J =5, h = 1/400 and for several wavenumbers k = 20,55,80,95 are reported
in Table [3] and Table 4] As discussed in the previous subsection, it can be seen
that ity decreases with growing Np. An important observation is that the perfor-
mance of PML with quadratic stretching functions is better in particular, when the
double sweep DDM starts with random initial iterates. It appears that fast decay-
ing evanescent modes can be transmitted well by PML with quadratic stretching
functions as opposed to PML with constant stretching functions.

We also apply the double sweep DDM to the Helmholtz equation in the open
space R? with only imaginary parts being stretched by PML. The results are
presented in Table [5] and Table [6} It shows that PML of N, = 5 can provide
good transmission conditions for both cases of constant and quadratic stretching
functions, when initial iterates are zero. However ity increases drastically with
decreasing Nj for the double sweep DDM with PML of constant stretching func-
tions starting with random initial iterates. This phenomenon is more noticeable
in the lower frequency regime. It seems that the solutions of low frequency in the
open space correspond to near-cutoff modes of large wavelength in waveguides, for
which large o¢ is required for sufficient absorption and it makes in turn discrete
reflection coefficients large.
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Np piecewise constant piecewise quadratic

k 5 10 20 40 5 10 20 40
20 5 4 4 3 5 4 4 3
55 6 4 4 3 5 4 4 3
80 5 4 3 3 5 4 3 3
95 5 4 3 3 5 4 3 3

Table 5: ity with zero initial iterates for J =5 and h = 1/400 in R

Np piecewise constant piecewise quadratic

k 5 10 20 40 5 10 20 40
20 95 26 8 4 4 3 3 3
55 15 5 3 3 5 4 3 3
80 8 4 3 3 5 4 3 3
95 6 4 3 3 5 4 3 3

Table 6: ity with random initial iterates for J =5 and h = 1/400 in R?.
7 Appendix

In this section, we provide the proof of Lemma

Proof (Proof of Lemma We will estimate

28 .
1\ 7 (wtRy(w))
X(w)*Nr = ((1 + dw + Rx(w))iw“éx(w)) ’ * =a®

where

1 ,
o = (it R 1) 7 and 10 = 27 (a4 R () = 208 i+ T2,
Since a — e and Ry (w)/w — 0 as w — 0, for any € > 0 we can take a positive
constant § small enough so that

|arg(a)|
In |a]

r < o;e and JORXU()w) < emin{or, 0;}. (7.1)

for |w| < 4.
Noting [a®| = e we need to estimate £(w) and S(w).
First, for N%,e > 0 by using the second inequality of (7.1)) we have that

R(w) In(la]) =S (w)arg(a)

%(m) < 72#}%@0,;[‘3(1 - 6) and ‘%(m” < Qﬂh7gdrﬂ(1 + E).
The first inequality of (7.1]) with the above estimates leads us to
R(w) In(la]) — S(w)arg(a) < —2up,e0oifIn(lal)((1 —€) —e(1 +¢))
< —2pp 0B 1n(lal) (1 — 3e).

Due to the convergence of finite element eigenvalue approximations, there is 0 <
e, < €x for each 0 < h < hg such that pp ¢ > pmin — €, for all £ and ¢, — 0 as
h — 0. Thus we can further show that for 0 < h < ho

R(w) In(|a]) — S(w)arg(a) < —2(1 — 3¢)B1In(la|)(on — €noi)
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In the same way, one can show that for M,QM <0
R(w) In(la]) — S(w)arg(a) < —2(1 — 3e)B1In(la|)(ou — epor).

Thus, we have

lim [y (w)[?Ne < e2er (137 B =2(1=3c)0,.
w—0

where o); = max{or,0;}. Since € can be arbitrarily small, it holds that

lim |X(w)|2N” < e2enomB =200

w—0
From the fact that e»“™% — 1 as h — 0, it then follows that for any ¢ > 0 there
exist 0 < dp and 0 < hy < hg such that if jw| < dg and 0 < h < hq, then

Ix(w)[PNr < (1 + e)e 207, (7.2)

Next, we will prove that still holds for |w| > o and for sufficiently small
h. To this end, we write w = hup 00 = re'?, where r = |w| and 6 = arg(w)
with 0 < @ < 7. Let xp(r) = x(w) as a function of r. Noting that |xg(r)|* =
1 — 2rsin(@) + O(r?) resulting from the asymptotic behavior of x in (£42), it
is revealed that |x4(r)| is a decreasing function near the origin. By taking into
account the fact limy— o0 |Xg(7)] = 2 — V3 < 1, we can choose 0 < §; < o small
enough so that

%o ()] = max [T (r)] (73

Let h1 < hy be a positive constant such that pminhi|oo| < d1. Now, it suffices
to prove ([7.2)) for h < hy and |w| > §1. For |w| > 61, let w = §1w/|w|, which can be
written as w = hjiy o0 With fiy, o = uh7561/\w|. Then fiy, satisfies pmin < ‘ﬂh,ﬂ as

) w .
Nminh < Mminhl < L - u - |/~Lh,f|h' (74)
loo| ool

Since || = 61 < |w|, (7.3)) gives |x(w)| < |x(w)], which in turn together with (7.2
and the fact that || < do and |fp ¢| > fimin — €, Obtained from (7.4) shows that

Ix(@)[?™? < [x ()P < (1+ e)e 277,

and the proof is completed. O
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