1. In this problem we will show that $\lim _{x \rightarrow 0} \sin (x)=0$.
(a) Use $\lim _{x \rightarrow 0+} \frac{\sin x}{x}=1$ to show that there exist $\delta>0$ such that if $0<x<\delta$, then

$$
0<\sin (x)<2 x
$$

(b) Use $\lim _{x \rightarrow 0-} \frac{\sin x}{x}=1$ to show that there exist $\delta>0$ such that if $-\delta<x<0$, then

$$
2 x<\sin (x)<0
$$

(c) Combine (a) and (b) to prove $\lim _{x \rightarrow 0} \sin (x)=0$.
2. Show that $\lim _{x \rightarrow 0} \cos x=1$ by using $\cos x=1-2 \sin ^{2}\left(\frac{x}{2}\right)$
3. Use the following

- limit laws

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x) \pm g(x)) & =\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x), \\
\lim _{x \rightarrow a}(f(x) g(x)) & =\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x),
\end{aligned}
$$

- the fact that

$$
\lim _{x \rightarrow 0} \sin (x)=0, \quad \lim _{x \rightarrow 0} \cos (x)=1
$$

- the trigonometric laws

$$
\begin{aligned}
& \sin (x+h)=\sin (x) \cos (h)+\cos (x) \sin (h) \\
& \cos (x+h)=\cos (x) \cos (h)-\sin (x) \sin (h)
\end{aligned}
$$

to show that sine and cosine functions has the direct substitution propery

$$
\begin{aligned}
& \lim _{x \rightarrow a} \sin (x)=\sin (a) \\
& \lim _{x \rightarrow a} \cos (x)=\cos (a)
\end{aligned}
$$

(Hint: $\lim _{x \rightarrow a} \sin (x)=\lim _{h \rightarrow 0} \sin (a+h)$)

